The Convergence Results of Differential Variational Inequality Problems

In this work, we suggest a differential variational inequality in reflexive Banach spaces and construct a sequence with a set of constraints and a penalty parameter. We use the penalty method to prove a unique solution to the problem and make suitable assumptions to prove the convergence of the sequ...

Full description

Bibliographic Details
Main Authors: Shih-Sen Chang, Salahuddin, Lin Wang, Zhaoli Ma
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/4/760
Description
Summary:In this work, we suggest a differential variational inequality in reflexive Banach spaces and construct a sequence with a set of constraints and a penalty parameter. We use the penalty method to prove a unique solution to the problem and make suitable assumptions to prove the convergence of the sequence. The proof is based on arguments for compactness, symmetry, pseudomonotonicity, Mosco convergence, inverse strong monotonicity and Lipschitz continuity. Finally, we discuss the boundary value problem for the differential variational inequality problem as an application.
ISSN:2073-8994