Summary: | Cancer remains one of the most challenging health problems worldwide, and localized therapeutic approaches based on micro/nanofibers have shown potential for its treatment. Micro/nanofibers offer several advantages as a drug delivery system, such as high surface area, tunable pore size, and sustained release properties, which can improve drug efficacy and reduce side effects. In addition, functionalization of these fibers with nanoparticles can enhance their targeting and therapeutic capabilities. Localized delivery of drugs and/or other therapeutic agents via micro/nanofibers can also help to overcome the limitations of systemic administration, such as poor bioavailability and off-target effects. Several studies have shown promising results in preclinical models of cancer, including inhibition of tumor growth and improved survival rates. However, more research is needed to overcome technical and regulatory challenges to bring these approaches to clinical use. Localized therapeutic approaches based on micro/nanofibers hold great promise for the future of cancer treatment, providing a targeted, effective, and minimally invasive alternative to traditional treatments. The main focus of this review is to explore the current treatments utilizing micro/nanofibers, as well as localized drug delivery systems that rely on fibrous structures to deliver and release drugs for the treatment of cancer in a specific area.
|