Dispersal mode and spatial extent influence distance-decay patterns in pond metacommunities.

Assuming that dispersal modes or abilities can explain the different responses of organisms to geographic or environmental distances, the distance-decay relationship is a useful tool to evaluate the relative role of local environmental structuring versus regional control in community composition. Ba...

Full description

Bibliographic Details
Main Authors: Irene Tornero, Dani Boix, Simonetta Bagella, Carla Pinto-Cruz, Maria Carmela Caria, Anabela Belo, Ana Lumbreras, Jordi Sala, Jordi Compte, Stéphanie Gascón
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6112654?pdf=render
Description
Summary:Assuming that dispersal modes or abilities can explain the different responses of organisms to geographic or environmental distances, the distance-decay relationship is a useful tool to evaluate the relative role of local environmental structuring versus regional control in community composition. Based on continuing the current theoretical framework on metacommunity dynamics and based on the predictive effect of distance on community similarity, we proposed a new framework that includes the effect of spatial extent. In addition, we tested the validity of our proposal by studying the community similarity among three biotic groups with different dispersal modes (macrofaunal active and passive dispersers and plants) from two pond networks, where one network had a small spatial extent, and the other network had an extent that was 4 times larger. Both pond networks have similar environmental variability. Overall, we found that environmental distance had larger effects than geographical distances in both pond networks. Moreover, our results suggested that species sorting is the main type of metacommunity dynamics shaping all biotic groups when the spatial extent is larger. In contrast, when the spatial extent is smaller, the observed distance-decay patterns suggested that different biotic groups were mainly governed by different metacommunity dynamics. While the distance-decay patterns of active dispersers better fit the trend that was expected when mass effects govern a metacommunity, passive dispersers showed a pattern that was expected when species sorting prevails. Finally, in the case of plants, it is difficult to associate their distance-decay patterns with one type of metacommunity dynamics.
ISSN:1932-6203