Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth

Summary: Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight i...

Full description

Bibliographic Details
Main Authors: Lisa J. Funkhouser-Jones, Rui Xu, Georgia Wilke, Yong Fu, Lawrence A. Schriefer, Heyde Makimaa, Rachel Rodgers, Elizabeth A. Kennedy, Kelli L. VanDussen, Thaddeus S. Stappenbeck, Megan T. Baldridge, L. David Sibley
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124723006915
_version_ 1797791874634743808
author Lisa J. Funkhouser-Jones
Rui Xu
Georgia Wilke
Yong Fu
Lawrence A. Schriefer
Heyde Makimaa
Rachel Rodgers
Elizabeth A. Kennedy
Kelli L. VanDussen
Thaddeus S. Stappenbeck
Megan T. Baldridge
L. David Sibley
author_facet Lisa J. Funkhouser-Jones
Rui Xu
Georgia Wilke
Yong Fu
Lawrence A. Schriefer
Heyde Makimaa
Rachel Rodgers
Elizabeth A. Kennedy
Kelli L. VanDussen
Thaddeus S. Stappenbeck
Megan T. Baldridge
L. David Sibley
author_sort Lisa J. Funkhouser-Jones
collection DOAJ
description Summary: Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B6 precursor, and indoles. Growth restriction of C. parvum by indoles does not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impairs host mitochondrial function and reduces total cellular ATP, as well as directly reducing the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole-producing bacteria, delays life cycle progression of the parasite in vitro and reduces the severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites impair mitochondrial function and contribute to colonization resistance to Cryptosporidium infection.
first_indexed 2024-03-13T02:25:02Z
format Article
id doaj.art-59e6a266f8ee48cab18b8af576086baf
institution Directory Open Access Journal
issn 2211-1247
language English
last_indexed 2024-03-13T02:25:02Z
publishDate 2023-07-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj.art-59e6a266f8ee48cab18b8af576086baf2023-06-30T04:21:52ZengElsevierCell Reports2211-12472023-07-01427112680Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growthLisa J. Funkhouser-Jones0Rui Xu1Georgia Wilke2Yong Fu3Lawrence A. Schriefer4Heyde Makimaa5Rachel Rodgers6Elizabeth A. Kennedy7Kelli L. VanDussen8Thaddeus S. Stappenbeck9Megan T. Baldridge10L. David Sibley11Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USADepartment of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USADepartment of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USADepartment of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USADepartment of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USADepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USADepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USADepartment of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Corresponding authorSummary: Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B6 precursor, and indoles. Growth restriction of C. parvum by indoles does not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impairs host mitochondrial function and reduces total cellular ATP, as well as directly reducing the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole-producing bacteria, delays life cycle progression of the parasite in vitro and reduces the severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites impair mitochondrial function and contribute to colonization resistance to Cryptosporidium infection.http://www.sciencedirect.com/science/article/pii/S2211124723006915CP: Microbiology
spellingShingle Lisa J. Funkhouser-Jones
Rui Xu
Georgia Wilke
Yong Fu
Lawrence A. Schriefer
Heyde Makimaa
Rachel Rodgers
Elizabeth A. Kennedy
Kelli L. VanDussen
Thaddeus S. Stappenbeck
Megan T. Baldridge
L. David Sibley
Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth
Cell Reports
CP: Microbiology
title Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth
title_full Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth
title_fullStr Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth
title_full_unstemmed Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth
title_short Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth
title_sort microbiota produced indole metabolites disrupt mitochondrial function and inhibit cryptosporidium parvum growth
topic CP: Microbiology
url http://www.sciencedirect.com/science/article/pii/S2211124723006915
work_keys_str_mv AT lisajfunkhouserjones microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT ruixu microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT georgiawilke microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT yongfu microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT lawrenceaschriefer microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT heydemakimaa microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT rachelrodgers microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT elizabethakennedy microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT kellilvandussen microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT thaddeussstappenbeck microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT megantbaldridge microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth
AT ldavidsibley microbiotaproducedindolemetabolitesdisruptmitochondrialfunctionandinhibitcryptosporidiumparvumgrowth