Molecular Analytical Assessment of Thermally Precipitated α-Lactalbumin after Resolubilization

Selective thermal precipitation followed by a mechanical separation step is a well described method for fractionation of the main whey proteins, α-lactalbumin (α-la) and β-lactoglobulin (β-lg). By choosing appropriate environmental conditions the thermal precipitation of either α-la or β-lg can be i...

Full description

Bibliographic Details
Main Authors: Nicole Haller, Isabel Maier, Ulrich Kulozik
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/10/9/2231
Description
Summary:Selective thermal precipitation followed by a mechanical separation step is a well described method for fractionation of the main whey proteins, α-lactalbumin (α-la) and β-lactoglobulin (β-lg). By choosing appropriate environmental conditions the thermal precipitation of either α-la or β-lg can be induced. Whereas β-lg irreversibly aggregates, the precipitated α-la can be resolubilized by a subsequent adjustment of the solution’s pH and the ionic composition. This study reports on the analytical characterization of resolubilized α-la compared to its native counterpart as a reference in order to assess whether the resolubilized α-la can be considered close to ‘native’. Turbidity and quantification by RP-HPLC of the resolubilized α-la solutions were used as a measure of solubility in aqueous environment. RP-HPLC was also applied to determine the elution time as a measure for protein’s hydrophobicity. DSC measurement was performed to determine the denaturation peak temperature of resolubilized α-la. FTIR spectroscopy provided insights in the secondary structure. The refolding of α-la achieved best results using pH 8.0 and a 3-fold stoichiometric amount of Ca<sup>2+</sup> per α-la molecule. The results showed that the mechanism of aggregation induced by gentle thermal treatment under acidic conditions with subsequent mechanical separation is reversible to a certain extent, however, the exact native conformation was not restored.
ISSN:2304-8158