A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations

<p>Wind-driven snow redistribution affects the glacier mass balance by eroding or depositing mass from or to different parts of the glacier’s surface. High-resolution observations are used to test the ability of large-eddy simulations as a tool for distributed mass balance modeling. We present...

Full description

Bibliographic Details
Main Authors: A. Voordendag, B. Goger, R. Prinz, T. Sauter, T. Mölg, M. Saigger, G. Kaser
Format: Article
Language:English
Published: Copernicus Publications 2024-02-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/18/849/2024/tc-18-849-2024.pdf
_version_ 1797296403164168192
author A. Voordendag
A. Voordendag
B. Goger
B. Goger
R. Prinz
T. Sauter
T. Mölg
M. Saigger
G. Kaser
author_facet A. Voordendag
A. Voordendag
B. Goger
B. Goger
R. Prinz
T. Sauter
T. Mölg
M. Saigger
G. Kaser
author_sort A. Voordendag
collection DOAJ
description <p>Wind-driven snow redistribution affects the glacier mass balance by eroding or depositing mass from or to different parts of the glacier’s surface. High-resolution observations are used to test the ability of large-eddy simulations as a tool for distributed mass balance modeling. We present a case study of observed and simulated snow redistribution over Hintereisferner glacier (Ötztal Alps, Austria) between 6 and 9 February 2021. Observations consist of three high-resolution digital elevation models (<span class="inline-formula">Δ<i>x</i>=1</span> m) derived from terrestrial laser scans taken shortly before, directly after, and 15 h after snowfall. The scans are complemented by datasets from three on-site weather stations. After the snowfall event, we observed a snowpack decrease of 0.08 m on average over the glacier. The decrease in the snow depth can be attributed to post-snowfall compaction and the wind-driven redistribution of snow. Simulations were performed with the Weather Research and Forecasting (WRF) model at <span class="inline-formula">Δ<i>x</i>=48</span> m with a newly implemented snow drift module. The spatial patterns of the simulated snow redistribution agree well with the observed generalized patterns. Snow redistribution contributed <span class="inline-formula">−0.026</span> m to the surface elevation decrease over the glacier surface on 8 February, resulting in a mass loss of <span class="inline-formula">−3.9</span> kg m<span class="inline-formula"><sup>−2</sup></span>, which is on the same order of magnitude as the observations. With the single case study we cannot yet extrapolate the impact of post-snowfall events on the seasonal glacier mass balance, but the study shows that the snow drift module in WRF is a powerful tool to improve knowledge on wind-driven snow redistribution patterns over glaciers.</p>
first_indexed 2024-03-07T22:04:13Z
format Article
id doaj.art-59f18e8557464233b26ac42802c7e7d9
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-03-07T22:04:13Z
publishDate 2024-02-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-59f18e8557464233b26ac42802c7e7d92024-02-23T22:09:19ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242024-02-011884986810.5194/tc-18-849-2024A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulationsA. Voordendag0A. Voordendag1B. Goger2B. Goger3R. Prinz4T. Sauter5T. Mölg6M. Saigger7G. Kaser8Department of Atmospheric and Cryospheric Sciences, Universität Innsbruck, Innsbruck, AustriaInstitute of Geodesy and Photogrammetry, ETH Zurich, Zurich, SwitzerlandDepartment of Atmospheric and Cryospheric Sciences, Universität Innsbruck, Innsbruck, AustriaCenter for Climate Systems Modeling, ETH Zurich, Zurich, SwitzerlandDepartment of Atmospheric and Cryospheric Sciences, Universität Innsbruck, Innsbruck, AustriaGeographisches Institut, Humboldt-Universität zu Berlin, Berlin, GermanyClimate System Research Group, Institute of Geography, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, GermanyClimate System Research Group, Institute of Geography, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, GermanyDepartment of Atmospheric and Cryospheric Sciences, Universität Innsbruck, Innsbruck, Austria<p>Wind-driven snow redistribution affects the glacier mass balance by eroding or depositing mass from or to different parts of the glacier’s surface. High-resolution observations are used to test the ability of large-eddy simulations as a tool for distributed mass balance modeling. We present a case study of observed and simulated snow redistribution over Hintereisferner glacier (Ötztal Alps, Austria) between 6 and 9 February 2021. Observations consist of three high-resolution digital elevation models (<span class="inline-formula">Δ<i>x</i>=1</span> m) derived from terrestrial laser scans taken shortly before, directly after, and 15 h after snowfall. The scans are complemented by datasets from three on-site weather stations. After the snowfall event, we observed a snowpack decrease of 0.08 m on average over the glacier. The decrease in the snow depth can be attributed to post-snowfall compaction and the wind-driven redistribution of snow. Simulations were performed with the Weather Research and Forecasting (WRF) model at <span class="inline-formula">Δ<i>x</i>=48</span> m with a newly implemented snow drift module. The spatial patterns of the simulated snow redistribution agree well with the observed generalized patterns. Snow redistribution contributed <span class="inline-formula">−0.026</span> m to the surface elevation decrease over the glacier surface on 8 February, resulting in a mass loss of <span class="inline-formula">−3.9</span> kg m<span class="inline-formula"><sup>−2</sup></span>, which is on the same order of magnitude as the observations. With the single case study we cannot yet extrapolate the impact of post-snowfall events on the seasonal glacier mass balance, but the study shows that the snow drift module in WRF is a powerful tool to improve knowledge on wind-driven snow redistribution patterns over glaciers.</p>https://tc.copernicus.org/articles/18/849/2024/tc-18-849-2024.pdf
spellingShingle A. Voordendag
A. Voordendag
B. Goger
B. Goger
R. Prinz
T. Sauter
T. Mölg
M. Saigger
G. Kaser
A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
The Cryosphere
title A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
title_full A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
title_fullStr A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
title_full_unstemmed A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
title_short A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
title_sort novel framework to investigate wind driven snow redistribution over an alpine glacier combination of high resolution terrestrial laser scans and large eddy simulations
url https://tc.copernicus.org/articles/18/849/2024/tc-18-849-2024.pdf
work_keys_str_mv AT avoordendag anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT avoordendag anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT bgoger anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT bgoger anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT rprinz anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT tsauter anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT tmolg anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT msaigger anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT gkaser anovelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT avoordendag novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT avoordendag novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT bgoger novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT bgoger novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT rprinz novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT tsauter novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT tmolg novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT msaigger novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations
AT gkaser novelframeworktoinvestigatewinddrivensnowredistributionoveranalpineglaciercombinationofhighresolutionterrestriallaserscansandlargeeddysimulations