Ab-Initio Study of Magnetically Intercalated Platinum Diselenide: The Impact of Platinum Vacancies

We study the magnetic properties of platinum diselenide (PtSe<sub>2</sub>) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in <inline-fo...

Full description

Bibliographic Details
Main Authors: Peter D. Reyntjens, Sabyasachi Tiwari, Maarten L. Van de Put, Bart Sorée, William G. Vandenberghe
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/15/4167
Description
Summary:We study the magnetic properties of platinum diselenide (PtSe<sub>2</sub>) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>PtSe</mi><mn>2</mn></msub></semantics></math></inline-formula> obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>PtSe</mi><mn>2</mn></msub></semantics></math></inline-formula> along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>PtSe</mi><mn>2</mn></msub></semantics></math></inline-formula>, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>PtSe</mi><mn>2</mn></msub></semantics></math></inline-formula>, suggesting that the magnetic groundstate in intercalated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>PtSe</mi><mn>2</mn></msub></semantics></math></inline-formula> can be controlled via defect engineering.
ISSN:1996-1944