Degradation Enhancement as the Mechanism of Resistance to Imazethapyr in Barnyardgrass

ABSTRACT: Non-target site (NTS) herbicide resistance by degradation enhancement is an increasing problem in several weeds around the world. In this study, the occurrence of degradation enhancement by cytochrome P450 monooxygenases (cytP450) was evaluated as the mechanism of resistance to imazethapyr...

Full description

Bibliographic Details
Main Authors: G. DALAZEN, A. PISONI, R.S. RAFAELI, A. MEROTTO JR.
Format: Article
Language:English
Published: Sociedade Brasileira da Ciência das Plantas Daninhas 2018-10-01
Series:Planta Daninha
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582018000100317&tlng=en
Description
Summary:ABSTRACT: Non-target site (NTS) herbicide resistance by degradation enhancement is an increasing problem in several weeds around the world. In this study, the occurrence of degradation enhancement by cytochrome P450 monooxygenases (cytP450) was evaluated as the mechanism of resistance to imazethapyr in barnyardgrass. The cytP450 inhibitors malathion and piperonyl butoxide (PBO) and the inducer naphthalic anhydride (NA), applied in mixture or sequentially with imazethapyr, were evaluated on imidazolinone-susceptible and -resistant barnyardgrass byotipes. In addition, the degradation of imazethapyr was analyzed in plants treated with imazethapyr applied alone or two hours after malathion or NA. The spraying of malathion and PBO reduced the resistance factor (RF) from 15.92 to 3.44 and 4.99, respectively, in the resistant population PALMS01. Conversely, the cytP450 inducer NA increased the RF from 4.45 to 8.32. Malathion increased imazethapyr concentrations in resistant barnyardgrass in comparison with plants sprayed with the herbicide alone, indicating the inhibition of imazethapyr degradation. The simultaneous spraying of malathion and imazethapyr was less efficient than the previous application of this cytP450 inhibitor. These results indicate that degradation enhancement caused by cytP450 enzymes is involved in the resistance mechanism of barnyardgrass to imazethapyr, and appropriate measures should be taken to manage these populations.
ISSN:0100-8358