A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay

In this paper, we propose and study a diffusive HIV infection model with infected cells delay, virus mature delay, abstract function incidence rate and a virus diffusion term. By introducing the reproductive numbers for viral infection <inline-formula><math xmlns="http://www.w3.org/199...

Full description

Bibliographic Details
Main Authors: Xiao-Lan Liu, Cheng-Cheng Zhu
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/3/129
_version_ 1797447106450948096
author Xiao-Lan Liu
Cheng-Cheng Zhu
author_facet Xiao-Lan Liu
Cheng-Cheng Zhu
author_sort Xiao-Lan Liu
collection DOAJ
description In this paper, we propose and study a diffusive HIV infection model with infected cells delay, virus mature delay, abstract function incidence rate and a virus diffusion term. By introducing the reproductive numbers for viral infection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> and for <i>CTL</i> immune response number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>1</mn></msub></semantics></math></inline-formula>, we show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>1</mn></msub></semantics></math></inline-formula> act as threshold parameter for the existence and stability of equilibria. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the infection-free equilibrium <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>0</mn></msub></semantics></math></inline-formula> is globally asymptotically stable, and the viruses are cleared; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>≤</mo><mn>1</mn><mo><</mo><msub><mi>R</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, the <i>CTL</i>-inactivated equilibrium <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>1</mn></msub></semantics></math></inline-formula> is globally asymptotically stable, and the infection becomes chronic but without persistent <i>CTL</i> response; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, the <i>CTL</i>-activated equilibrium <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>2</mn></msub></semantics></math></inline-formula> is globally asymptotically stable, and the infection is chronic with persistent <i>CTL</i> response. Next, we study the dynamic of the discreted system of our model by using non-standard finite difference scheme. We find that the global stability of the equilibria of the continuous model and the discrete model is not always consistent. That is, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>≤</mo><mn>1</mn><mo><</mo><msub><mi>R</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, the global stability of the two kinds model is consistent. However, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, the global stability of the two kinds model is not consistent. Finally, numerical simulations are carried out to illustrate the theoretical results and show the effects of diffusion factors on the time-delay virus model.
first_indexed 2024-03-09T13:51:03Z
format Article
id doaj.art-5a0e41c0d45549deb48472b0dbcaf778
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T13:51:03Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-5a0e41c0d45549deb48472b0dbcaf7782023-11-30T20:50:18ZengMDPI AGAxioms2075-16802022-03-0111312910.3390/axioms11030129A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular DelayXiao-Lan Liu0Cheng-Cheng Zhu1School of Arts and Science, Suqian University, Suqian 223800, ChinaSchool of Science, Jiangnan University, Wuxi 214122, ChinaIn this paper, we propose and study a diffusive HIV infection model with infected cells delay, virus mature delay, abstract function incidence rate and a virus diffusion term. By introducing the reproductive numbers for viral infection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> and for <i>CTL</i> immune response number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>1</mn></msub></semantics></math></inline-formula>, we show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>1</mn></msub></semantics></math></inline-formula> act as threshold parameter for the existence and stability of equilibria. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the infection-free equilibrium <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>0</mn></msub></semantics></math></inline-formula> is globally asymptotically stable, and the viruses are cleared; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>≤</mo><mn>1</mn><mo><</mo><msub><mi>R</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, the <i>CTL</i>-inactivated equilibrium <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>1</mn></msub></semantics></math></inline-formula> is globally asymptotically stable, and the infection becomes chronic but without persistent <i>CTL</i> response; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, the <i>CTL</i>-activated equilibrium <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>2</mn></msub></semantics></math></inline-formula> is globally asymptotically stable, and the infection is chronic with persistent <i>CTL</i> response. Next, we study the dynamic of the discreted system of our model by using non-standard finite difference scheme. We find that the global stability of the equilibria of the continuous model and the discrete model is not always consistent. That is, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>≤</mo><mn>1</mn><mo><</mo><msub><mi>R</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, the global stability of the two kinds model is consistent. However, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, the global stability of the two kinds model is not consistent. Finally, numerical simulations are carried out to illustrate the theoretical results and show the effects of diffusion factors on the time-delay virus model.https://www.mdpi.com/2075-1680/11/3/129basic reproduction numberequilibriumglobal stabilityimmune responsenonstandard finite difference schemenumerical simulation
spellingShingle Xiao-Lan Liu
Cheng-Cheng Zhu
A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay
Axioms
basic reproduction number
equilibrium
global stability
immune response
nonstandard finite difference scheme
numerical simulation
title A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay
title_full A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay
title_fullStr A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay
title_full_unstemmed A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay
title_short A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay
title_sort non standard finite difference scheme for a diffusive hiv 1 infection model with immune response and intracellular delay
topic basic reproduction number
equilibrium
global stability
immune response
nonstandard finite difference scheme
numerical simulation
url https://www.mdpi.com/2075-1680/11/3/129
work_keys_str_mv AT xiaolanliu anonstandardfinitedifferenceschemeforadiffusivehiv1infectionmodelwithimmuneresponseandintracellulardelay
AT chengchengzhu anonstandardfinitedifferenceschemeforadiffusivehiv1infectionmodelwithimmuneresponseandintracellulardelay
AT xiaolanliu nonstandardfinitedifferenceschemeforadiffusivehiv1infectionmodelwithimmuneresponseandintracellulardelay
AT chengchengzhu nonstandardfinitedifferenceschemeforadiffusivehiv1infectionmodelwithimmuneresponseandintracellulardelay