Search for dark forces at KLOE-2

During the last years several Dark Sector Models have been proposed in order to address striking and puzzling astrophysical observations which fail standard interpretations. In the minimal case a new vector particle, the so called dark photon or U-boson, is introduced, with small coupling with Stand...

Full description

Bibliographic Details
Main Author: Perez del Rio Elena
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2019/17/epjconf_phipsi18_06002.pdf
Description
Summary:During the last years several Dark Sector Models have been proposed in order to address striking and puzzling astrophysical observations which fail standard interpretations. In the minimal case a new vector particle, the so called dark photon or U-boson, is introduced, with small coupling with Standard Model particles. Also, the existence of a dark Higgs boson h’ is postulated, in analogy with the Standard Model, to give mass to the U-boson through the Spontaneous Symmetry Breaking mechanism. The discovery of such a Dark Force Mediator would belong to a new field of Physics Beyond the Standard Model. The KLOE experiment, working on the DAΦNE e+e− collider in Frascati, searched for the existence of the U-boson in a quite complete way, investigating several different processes and final states. Tight limits on the model parameters have been set at 90%CL. Further improvements are expected in terms of sensitivity and discovery potential with the new KLOE-2 detector working on the improved DAΦNE e+e− collider, which has collected more than 5 fb−1.
ISSN:2100-014X