Noise Level and Similarity Analysis for Computed Tomographic Thoracic Image with Fast Non-Local Means Denoising Algorithm

Although conventional denoising filters have been developed for noise reduction from digital images, these filters simultaneously cause blurring in the images. To address this problem, we proposed the fast non-local means (FNLM) denoising algorithm which would preserve the edge information of object...

Full description

Bibliographic Details
Main Authors: Bae-Guen Kim, Seong-Hyeon Kang, Chan Rok Park, Hyun-Woo Jeong, Youngjin Lee
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/21/7455
Description
Summary:Although conventional denoising filters have been developed for noise reduction from digital images, these filters simultaneously cause blurring in the images. To address this problem, we proposed the fast non-local means (FNLM) denoising algorithm which would preserve the edge information of objects better than conventional denoising filters. In this study, we obtained thoracic computed tomography (CT) images from a male adult mesh (MASH) phantom modeled by computer and a five-year-old phantom to perform both the simulation study and the practical study. Subsequently, the FNLM denoising algorithm and conventional denoising filters, such as the Gaussian, median, and Wiener filters, were applied to the MASH phantom image adding Gaussian noise with a standard deviation of 0.002 and practical CT images. Finally, the results were compared quantitatively in terms of the coefficient of variation (COV), contrast-to-noise ratio (CNR), peak signal-to-noise ratio (PSNR), and correlation coefficient (CC). The results showed that the FNLM denoising algorithm was more efficient than the conventional denoising filters. In conclusion, through the simulation study and the practical study, this study demonstrated the feasibility of the FNLM denoising algorithm for noise reduction from thoracic CT images.
ISSN:2076-3417