Human Keratinocytes Adopt Neuronal Fates After Transplantation in the Developing Rat Brain

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ect...

Full description

Bibliographic Details
Main Authors: Andrea Tenorio-Mina, Daniel Cortés, Joel Esquivel-Estudillo, Adolfo López-Ornelas, Alejandro Cabrera-Wrooman, Rolando Lara-Rodarte, Itzel Escobedo-Avila, Fernanda Vargas-Romero, Diana Toledo-Hernández, Enrique Estudillo, Juan José Acevedo-Fernández, Jesús Santa-Olalla Tapia, Iván Velasco
Format: Article
Language:English
Published: SAGE Publishing 2021-01-01
Series:Cell Transplantation
Online Access:https://doi.org/10.1177/0963689720978219
_version_ 1819054242796666880
author Andrea Tenorio-Mina
Daniel Cortés
Joel Esquivel-Estudillo
Adolfo López-Ornelas
Alejandro Cabrera-Wrooman
Rolando Lara-Rodarte
Itzel Escobedo-Avila
Fernanda Vargas-Romero
Diana Toledo-Hernández
Enrique Estudillo
Juan José Acevedo-Fernández
Jesús Santa-Olalla Tapia
Iván Velasco
author_facet Andrea Tenorio-Mina
Daniel Cortés
Joel Esquivel-Estudillo
Adolfo López-Ornelas
Alejandro Cabrera-Wrooman
Rolando Lara-Rodarte
Itzel Escobedo-Avila
Fernanda Vargas-Romero
Diana Toledo-Hernández
Enrique Estudillo
Juan José Acevedo-Fernández
Jesús Santa-Olalla Tapia
Iván Velasco
author_sort Andrea Tenorio-Mina
collection DOAJ
description Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.
first_indexed 2024-12-21T12:48:31Z
format Article
id doaj.art-5a21c2b0c73548b58e451802d51f744b
institution Directory Open Access Journal
issn 1555-3892
language English
last_indexed 2024-12-21T12:48:31Z
publishDate 2021-01-01
publisher SAGE Publishing
record_format Article
series Cell Transplantation
spelling doaj.art-5a21c2b0c73548b58e451802d51f744b2022-12-21T19:03:33ZengSAGE PublishingCell Transplantation1555-38922021-01-013010.1177/0963689720978219Human Keratinocytes Adopt Neuronal Fates After Transplantation in the Developing Rat BrainAndrea Tenorio-Mina0Daniel Cortés1Joel Esquivel-Estudillo2Adolfo López-Ornelas3Alejandro Cabrera-Wrooman4Rolando Lara-Rodarte5Itzel Escobedo-Avila6Fernanda Vargas-Romero7Diana Toledo-Hernández8Enrique Estudillo9Juan José Acevedo-Fernández10Jesús Santa-Olalla Tapia11Iván Velasco12 Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico Unidad de Diagnóstico y Medicina Molecular, “Dr. Ruy Pérez Tamayo”, Hospital del Niño Morelense/Facultad de Medicina-UAEM, Zapata, Morelos, Mexico División de Investigación, Hospital Juárez de México, Mexico City, Mexico Instituto Nacional de Rehabilitación, Mexico City, Mexico Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico Centro de Investigación en Dinámica Celular, Instituto de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico Unidad de Diagnóstico y Medicina Molecular, “Dr. Ruy Pérez Tamayo”, Hospital del Niño Morelense/Facultad de Medicina-UAEM, Zapata, Morelos, Mexico Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, MexicoHuman skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.https://doi.org/10.1177/0963689720978219
spellingShingle Andrea Tenorio-Mina
Daniel Cortés
Joel Esquivel-Estudillo
Adolfo López-Ornelas
Alejandro Cabrera-Wrooman
Rolando Lara-Rodarte
Itzel Escobedo-Avila
Fernanda Vargas-Romero
Diana Toledo-Hernández
Enrique Estudillo
Juan José Acevedo-Fernández
Jesús Santa-Olalla Tapia
Iván Velasco
Human Keratinocytes Adopt Neuronal Fates After Transplantation in the Developing Rat Brain
Cell Transplantation
title Human Keratinocytes Adopt Neuronal Fates After Transplantation in the Developing Rat Brain
title_full Human Keratinocytes Adopt Neuronal Fates After Transplantation in the Developing Rat Brain
title_fullStr Human Keratinocytes Adopt Neuronal Fates After Transplantation in the Developing Rat Brain
title_full_unstemmed Human Keratinocytes Adopt Neuronal Fates After Transplantation in the Developing Rat Brain
title_short Human Keratinocytes Adopt Neuronal Fates After Transplantation in the Developing Rat Brain
title_sort human keratinocytes adopt neuronal fates after transplantation in the developing rat brain
url https://doi.org/10.1177/0963689720978219
work_keys_str_mv AT andreatenoriomina humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT danielcortes humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT joelesquivelestudillo humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT adolfolopezornelas humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT alejandrocabrerawrooman humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT rolandolararodarte humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT itzelescobedoavila humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT fernandavargasromero humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT dianatoledohernandez humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT enriqueestudillo humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT juanjoseacevedofernandez humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT jesussantaolallatapia humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain
AT ivanvelasco humankeratinocytesadoptneuronalfatesaftertransplantationinthedevelopingratbrain