Nickel-Copper Oxide Catalysts Deposited on Stainless Steel Meshes by Plasma Jet Sputtering: Comparison with Granular Analogues and Synergistic Effect in VOC Oxidation

A novel method for the preparation of Ni-Cu oxide catalysts—deposition on stainless steel meshes using hollow cathode plasma jet sputtering—was studied. This method allows the preparation of thin oxide films. Consequently, the whole volume of the active phase is readily accessible for the reactants...

Full description

Bibliographic Details
Main Authors: Květa Jirátová, Petr Soukal, Anna Kapran, Timur Babii, Jana Balabánová, Martin Koštejn, Martin Čada, Jaroslav Maixner, Pavel Topka, Zdeněk Hubička, František Kovanda
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/13/3/595
Description
Summary:A novel method for the preparation of Ni-Cu oxide catalysts—deposition on stainless steel meshes using hollow cathode plasma jet sputtering—was studied. This method allows the preparation of thin oxide films. Consequently, the whole volume of the active phase is readily accessible for the reactants and can be employed in the catalytic reaction due to the negligible effect of internal diffusion. As a result, the activity of our sputtered catalyst was seven times higher in ethanol oxidation and 61 times higher in toluene oxidation than that of the corresponding granular catalyst. Moreover, due to stainless steel meshes used as a catalyst support, the pressure drop across the catalyst bed was lower. Finally, the catalytic activity of the sputtered Ni-Cu oxide catalyst with Ni:Cu molar ratio of 1:1 in ethanol oxidation was 1.7 times higher than that of the commercial EnviCat<sup>®</sup> VOC-1544 catalyst, while the amount of the active phase in the catalyst bed was 139 times lower. The outstanding performance of the Ni<sub>0.5</sub>Cu<sub>0.5</sub> catalyst was ascribed to the synergistic effect between the copper and nickel components.
ISSN:2073-4344