Summary: | Abstract The incorporation of natural fibers into polymer matrices poses challenges due to physicochemical incompatibility, which is typically addressed through precursor modification or the use of compatibilizers. Here, we introduce a novel type of composite that overcomes this challenge by utilizing a network of fine, porous cellulosic sheets inter-diffused with a commercial paraffin films. This approach physically adheres the fiber network to the matrix, preserving its structure. Microscopy images confirm the formation of the proposed microstructure, and mechanical testing reveals a gradual increase in modulus and strength with the incorporation of cellulose. The maximum incorporation achieved was 7.6% (w/w) of cellulosic fibers, resulting in a 167% increase (1.67 times improved) in composite stiffness. Moreover, these composites exhibit ductility, with an average deformation of 410 ± 38%, corresponding to 20% reduction in relation to pure matrix. Our findings demonstrate the potential of this approach for developing sustainable materials with improved mechanical properties.
|