A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
Photocatalytic water splitting is a promising route to hydrogen generation from renewable solar power. Here, the authors report a hydrogen-evolving photochemical molecular device based on a self-assembled coordination cage, which simultaneously incorporates multiple photosensitizing and catalytic me...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2016-11-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/ncomms13169 |
Summary: | Photocatalytic water splitting is a promising route to hydrogen generation from renewable solar power. Here, the authors report a hydrogen-evolving photochemical molecular device based on a self-assembled coordination cage, which simultaneously incorporates multiple photosensitizing and catalytic metal centres. |
---|---|
ISSN: | 2041-1723 |