New ekpyrotic quantum cosmology

Ekpyrotic instantons describe the emergence of classical contracting universes out of the no-boundary quantum state. However, up to now these instantons ended in a big crunch singularity. We remedy this by adding a higher-derivative term, allowing a ghost condensate to form. This causes a smooth, no...

Full description

Bibliographic Details
Main Author: Jean-Luc Lehners
Format: Article
Language:English
Published: Elsevier 2015-11-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269315007078
Description
Summary:Ekpyrotic instantons describe the emergence of classical contracting universes out of the no-boundary quantum state. However, up to now these instantons ended in a big crunch singularity. We remedy this by adding a higher-derivative term, allowing a ghost condensate to form. This causes a smooth, non-singular bounce from the contracting phase into an expanding, kinetic-dominated phase. Remarkably, and although there is a non-trivial evolution during the bounce, the wavefunction of the universe is “classical” in a WKB sense just as much after the bounce as before. These new non-singular instantons can thus form the basis for a fully non-singular and calculable ekpyrotic history of the universe, from creation until now.
ISSN:0370-2693
1873-2445