Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef Fish

Recent studies demonstrate that diel CO2 cycles, such as those prevalent in many shallow water habitats, can potentially modify the effects of ocean acidification conditions on marine organisms. However, whether the interaction between elevated CO2 and diel CO2 cycles is further modified by elevated...

Full description

Bibliographic Details
Main Authors: Michael D. Jarrold, Philip L. Munday
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-12-01
Series:Frontiers in Marine Science
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fmars.2018.00458/full
_version_ 1818150908551233536
author Michael D. Jarrold
Michael D. Jarrold
Philip L. Munday
author_facet Michael D. Jarrold
Michael D. Jarrold
Philip L. Munday
author_sort Michael D. Jarrold
collection DOAJ
description Recent studies demonstrate that diel CO2 cycles, such as those prevalent in many shallow water habitats, can potentially modify the effects of ocean acidification conditions on marine organisms. However, whether the interaction between elevated CO2 and diel CO2 cycles is further modified by elevated temperature is unknown. To test this, we reared juvenile spiny damselfish, Acanthochromis polyacanthus, for 11 weeks in two stable (450 and 1000 μatm) and two diel- cycling elevated CO2 treatments (1000 ± 300 and 1000 ± 500 μatm) at both current-day (29°C) and projected future temperature (31°C). We measured the effects on survivorship, growth, behavioral lateralization, activity, boldness and escape performance (fast starts). A significant interaction between CO2 and temperature was only detected for survivorship. Survival was lower in the two cycling CO2 treatments at 31°C compared with 29°C but did not differ between temperatures in the two stable CO2 treatments. In other traits we observed independent effects of elevated CO2, and interactions between elevated CO2 and diel CO2 cycles, but these effects were not influenced by temperature. There was a trend toward decreased growth in fish reared under stable elevated CO2 that was counteracted by diel CO2 cycles, with fish reared under cycling CO2 being significantly larger than fish reared under stable elevated CO2. Diel CO2 cycles also mediated the negative effect of elevated CO2 on behavioral lateralization, as previously reported. Routine activity was reduced in the 1000 ± 500 μatm CO2 treatment compared to control fish. In contrast, neither boldness nor fast-starts were affected by any of the CO2 treatments. Elevated temperature had significant independent effects on growth, routine activity and fast start performance. Our results demonstrate that diel CO2 cycles can significantly modify the growth and behavioral responses of fish under elevated CO2 and that these effects are not altered by elevated temperature, at least in this species. Our findings add to a growing body of work that highlights the critical importance of incorporating natural CO2 variability in ocean acidification experiments to more accurately assess the effects of ocean climate change on marine ecosystems.
first_indexed 2024-12-11T13:30:24Z
format Article
id doaj.art-5a5dfa4c208f47ca859193d647ace3be
institution Directory Open Access Journal
issn 2296-7745
language English
last_indexed 2024-12-11T13:30:24Z
publishDate 2018-12-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Marine Science
spelling doaj.art-5a5dfa4c208f47ca859193d647ace3be2022-12-22T01:05:17ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452018-12-01510.3389/fmars.2018.00458415742Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef FishMichael D. Jarrold0Michael D. Jarrold1Philip L. Munday2College of Science and Engineering, James Cook University, Townsville, QLD, AustraliaARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, AustraliaARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, AustraliaRecent studies demonstrate that diel CO2 cycles, such as those prevalent in many shallow water habitats, can potentially modify the effects of ocean acidification conditions on marine organisms. However, whether the interaction between elevated CO2 and diel CO2 cycles is further modified by elevated temperature is unknown. To test this, we reared juvenile spiny damselfish, Acanthochromis polyacanthus, for 11 weeks in two stable (450 and 1000 μatm) and two diel- cycling elevated CO2 treatments (1000 ± 300 and 1000 ± 500 μatm) at both current-day (29°C) and projected future temperature (31°C). We measured the effects on survivorship, growth, behavioral lateralization, activity, boldness and escape performance (fast starts). A significant interaction between CO2 and temperature was only detected for survivorship. Survival was lower in the two cycling CO2 treatments at 31°C compared with 29°C but did not differ between temperatures in the two stable CO2 treatments. In other traits we observed independent effects of elevated CO2, and interactions between elevated CO2 and diel CO2 cycles, but these effects were not influenced by temperature. There was a trend toward decreased growth in fish reared under stable elevated CO2 that was counteracted by diel CO2 cycles, with fish reared under cycling CO2 being significantly larger than fish reared under stable elevated CO2. Diel CO2 cycles also mediated the negative effect of elevated CO2 on behavioral lateralization, as previously reported. Routine activity was reduced in the 1000 ± 500 μatm CO2 treatment compared to control fish. In contrast, neither boldness nor fast-starts were affected by any of the CO2 treatments. Elevated temperature had significant independent effects on growth, routine activity and fast start performance. Our results demonstrate that diel CO2 cycles can significantly modify the growth and behavioral responses of fish under elevated CO2 and that these effects are not altered by elevated temperature, at least in this species. Our findings add to a growing body of work that highlights the critical importance of incorporating natural CO2 variability in ocean acidification experiments to more accurately assess the effects of ocean climate change on marine ecosystems.https://www.frontiersin.org/article/10.3389/fmars.2018.00458/fullocean acidificationocean warminglateralizationactivityfast startspH variability
spellingShingle Michael D. Jarrold
Michael D. Jarrold
Philip L. Munday
Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef Fish
Frontiers in Marine Science
ocean acidification
ocean warming
lateralization
activity
fast starts
pH variability
title Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef Fish
title_full Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef Fish
title_fullStr Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef Fish
title_full_unstemmed Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef Fish
title_short Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef Fish
title_sort elevated temperature does not substantially modify the interactive effects between elevated co2 and diel co2 cycles on the survival growth and behavior of a coral reef fish
topic ocean acidification
ocean warming
lateralization
activity
fast starts
pH variability
url https://www.frontiersin.org/article/10.3389/fmars.2018.00458/full
work_keys_str_mv AT michaeldjarrold elevatedtemperaturedoesnotsubstantiallymodifytheinteractiveeffectsbetweenelevatedco2anddielco2cyclesonthesurvivalgrowthandbehaviorofacoralreeffish
AT michaeldjarrold elevatedtemperaturedoesnotsubstantiallymodifytheinteractiveeffectsbetweenelevatedco2anddielco2cyclesonthesurvivalgrowthandbehaviorofacoralreeffish
AT philiplmunday elevatedtemperaturedoesnotsubstantiallymodifytheinteractiveeffectsbetweenelevatedco2anddielco2cyclesonthesurvivalgrowthandbehaviorofacoralreeffish