Interactions between Quantum Dots and G-Actin

Quantum dots (QDs) are a type of nanoparticle with excellent optical properties, suitable for many optical-based biomedical applications. However, the potential of quantum dots to be used in clinical settings is limited by their toxicity. As such, much effort has been invested to examine the mechani...

Full description

Bibliographic Details
Main Authors: Nhi Le, Abhishu Chand, Emma Braun, Chloe Keyes, Qihua Wu, Kyoungtae Kim
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/19/14760
Description
Summary:Quantum dots (QDs) are a type of nanoparticle with excellent optical properties, suitable for many optical-based biomedical applications. However, the potential of quantum dots to be used in clinical settings is limited by their toxicity. As such, much effort has been invested to examine the mechanism of QDs’ toxicity. Yet, the current literature mainly focuses on ROS- and apoptosis-mediated cell death induced by QDs, which overlooks other aspects of QDs’ toxicity. Thus, our study aimed to provide another way by which QDs negatively impact cellular processes by investigating the possibility of protein structure and function modification upon direct interaction. Through shotgun proteomics, we identified a number of QD-binding proteins, which are functionally associated with essential cellular processes and components, such as transcription, translation, vesicular trafficking, and the actin cytoskeleton. Among these proteins, we chose to closely examine the interaction between quantum dots and actin, as actin is one of the most abundant proteins in cells and plays crucial roles in cellular processes and structural maintenance. We found that CdSe/ZnS QDs spontaneously bind to G-actin in vitro, causing a static quenching of G-actin’s intrinsic fluorescence. Furthermore, we found that this interaction favors the formation of a QD–actin complex with a binding ratio of 1:2.5. Finally, we also found that CdSe/ZnS QDs alter the secondary structure of G-actin, which may affect G-actin’s function and properties. Overall, our study provides an in-depth mechanistic examination of the impact of CdSe/ZnS QDs on G-actin, proposing that direct interaction is another aspect of QDs’ toxicity.
ISSN:1661-6596
1422-0067