High-Precision Potential Evapotranspiration Model Using GNSS Observation

Potential evapotranspiration (PET) can reflect the characteristics of drought change in different time scales and is the key parameter for calculating the standardized precipitation evapotranspiration index (SPEI). The Thornthwaite (TH) and Penman–Monteith (PM) models are generally used to calculate...

Full description

Bibliographic Details
Main Authors: Qingzhi Zhao, Tingting Sun, Tengxu Zhang, Lin He, Zhiyi Zhang, Ziyu Shen, Si Xiong
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/23/4848
Description
Summary:Potential evapotranspiration (PET) can reflect the characteristics of drought change in different time scales and is the key parameter for calculating the standardized precipitation evapotranspiration index (SPEI). The Thornthwaite (TH) and Penman–Monteith (PM) models are generally used to calculate PET, but the precision of PET derived from the TH model is poor, and a large number of meteorological parameters are required to evaluate the PM model. To obtain high-precision PET with fewer meteorological parameters, a high-precision PET (HPET) model is proposed to calculate PET by introducing precipitable water vapor (PWV) from Global Navigation Satellite System (GNSS) observation. The PET difference (DPET) between TH- and PM-derived PET was calculated first. Then, the relationship between the DPET and GNSS-derived PWV/temperature was analysed, and a piecewise linear regression model was calculated to fit the DPET. Finally, the HPET model was established by adding the fitted DPET to the initial PET derived from the TH model. The Loess Plateau (LP) was selected as the experiment area, and the statistical results show the satisfactory performance of the proposed HPET model. The averaged root mean square (RMS) of the HPET model over the whole LP area is 8.00 mm, whereas the values for the TH and revised TH (RTH) models are 34.25 and 12.55 mm, respectively, when the PM-derived PET is regarded as the reference. Compared with the TH and RTH models, the average improvement rates of the HPET model over the whole LP area are 77.5 and 40.5%, respectively. In addition, the HPET-derived SPEI is better than that of the TH and RTH models at different month scales, with average improvement rates of 49.8 and 23.1%, respectively, over the whole LP area. Such results show the superiority of the proposed HPET model to the existing PET models.
ISSN:2072-4292