Comparative evaluation of different versions of exposure-free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in Tanzania
Abstract Background Estimating human exposure to mosquito vectors is crucial for the prediction of malaria transmission and intervention impact. The human landing catch method is frequently used to directly measure estimate exposure rates; however, there has been an increasing shift from this method...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2022-11-01
|
Series: | Parasites & Vectors |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13071-022-05549-4 |
_version_ | 1798018188900827136 |
---|---|
author | Victoria Githu Maneno E. Baravuga Asiya Mbarawa Hajirani M. Msuya Yeromin P. Mlacha Prosper P. Chaki Samson Kiware Nosrat Mirzai Heather M. Ferguson Nicodem J. Govella |
author_facet | Victoria Githu Maneno E. Baravuga Asiya Mbarawa Hajirani M. Msuya Yeromin P. Mlacha Prosper P. Chaki Samson Kiware Nosrat Mirzai Heather M. Ferguson Nicodem J. Govella |
author_sort | Victoria Githu |
collection | DOAJ |
description | Abstract Background Estimating human exposure to mosquito vectors is crucial for the prediction of malaria transmission and intervention impact. The human landing catch method is frequently used to directly measure estimate exposure rates; however, there has been an increasing shift from this method to exposure-free alternatives, such as the mosquito electrocuting traps (MET) and other approaches. While these latter methods can provide robust and representative values of human exposure and mosquito density, they often still require a human volunteer, which poses logistical challenges. Additionally, in the case of the MET, the early MET prototype (METe) required human volunteers to wear protective clothing that could be uncomfortable. We investigated two alternative trapping approaches to address these challenges by comparing the performance of the METe prototype to: (i) a modified caged MET prototype that offers full protection to users (METc) and (ii) a barrier screen trap (BST) designed to passively sample (host-seeking and blood-fed) mosquitoes outdoors without requiring a human participant. Methods The relative performance of the METe, METc and BST were evaluated in a 3 × 3 Latin square field experiment design conducted in south-eastern Tanzania over 12 nights of sampling. The outcomes of interest were the nightly catch of mosquitoes and biting time estimates. Results The METc and BST caught similar numbers of An. arabiensis as the METe (relative ratio [RR] = 0.76, 95% confidence interval [CI]: 0.42–1.39, P = 0.38 and RR = 1.13, 95% CI: 0.63–2.04, P = 0.69, respectively). Similarly, the METc and BST caught similar numbers of Culex spp. as the METe (RR = 0.87, 95% CI: 0.62–1.22, P = 0.42 and RR = 0.80, 95% CI: 0.57–1.12, P = 0.199, respectively). All three trapping methods indicated a similar pattern of biting activity by An. arabiensis and Culex spp., characterized by biting starting in the early evening (18:00–22:00), peaking when people are typically sleeping (22:00–05:00) and dropping off drastically toward the morning (05:00–07:00). Conclusions The modifications made to the METe design to improve user comfort and remove the need for protective clothing did not result in an underestimation of mosquito vector abundance nor misrepresentation of their biting time pattern. We recommend the METc for use over the METe design. Similarly, the BST demonstrated potential for monitoring malaria and filariasis vector densities in Tanzania. Graphical Abstract |
first_indexed | 2024-04-11T16:19:53Z |
format | Article |
id | doaj.art-5a7bf3b163b842399f3c3f3818f081ee |
institution | Directory Open Access Journal |
issn | 1756-3305 |
language | English |
last_indexed | 2024-04-11T16:19:53Z |
publishDate | 2022-11-01 |
publisher | BMC |
record_format | Article |
series | Parasites & Vectors |
spelling | doaj.art-5a7bf3b163b842399f3c3f3818f081ee2022-12-22T04:14:24ZengBMCParasites & Vectors1756-33052022-11-011511810.1186/s13071-022-05549-4Comparative evaluation of different versions of exposure-free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in TanzaniaVictoria Githu0Maneno E. Baravuga1Asiya Mbarawa2Hajirani M. Msuya3Yeromin P. Mlacha4Prosper P. Chaki5Samson Kiware6Nosrat Mirzai7Heather M. Ferguson8Nicodem J. Govella9Environmental Health, and Ecological Sciences Department, Ifakara Health InstituteEnvironmental Health, and Ecological Sciences Department, Ifakara Health InstituteEnvironmental Health, and Ecological Sciences Department, Ifakara Health InstituteEnvironmental Health, and Ecological Sciences Department, Ifakara Health InstituteEnvironmental Health, and Ecological Sciences Department, Ifakara Health InstituteEnvironmental Health, and Ecological Sciences Department, Ifakara Health InstituteEnvironmental Health, and Ecological Sciences Department, Ifakara Health InstituteBioelectronics Unit, University of GlasgowInstitute of Biodiversity, Animal Heath and Comparative Medicine, University of GlasgowEnvironmental Health, and Ecological Sciences Department, Ifakara Health InstituteAbstract Background Estimating human exposure to mosquito vectors is crucial for the prediction of malaria transmission and intervention impact. The human landing catch method is frequently used to directly measure estimate exposure rates; however, there has been an increasing shift from this method to exposure-free alternatives, such as the mosquito electrocuting traps (MET) and other approaches. While these latter methods can provide robust and representative values of human exposure and mosquito density, they often still require a human volunteer, which poses logistical challenges. Additionally, in the case of the MET, the early MET prototype (METe) required human volunteers to wear protective clothing that could be uncomfortable. We investigated two alternative trapping approaches to address these challenges by comparing the performance of the METe prototype to: (i) a modified caged MET prototype that offers full protection to users (METc) and (ii) a barrier screen trap (BST) designed to passively sample (host-seeking and blood-fed) mosquitoes outdoors without requiring a human participant. Methods The relative performance of the METe, METc and BST were evaluated in a 3 × 3 Latin square field experiment design conducted in south-eastern Tanzania over 12 nights of sampling. The outcomes of interest were the nightly catch of mosquitoes and biting time estimates. Results The METc and BST caught similar numbers of An. arabiensis as the METe (relative ratio [RR] = 0.76, 95% confidence interval [CI]: 0.42–1.39, P = 0.38 and RR = 1.13, 95% CI: 0.63–2.04, P = 0.69, respectively). Similarly, the METc and BST caught similar numbers of Culex spp. as the METe (RR = 0.87, 95% CI: 0.62–1.22, P = 0.42 and RR = 0.80, 95% CI: 0.57–1.12, P = 0.199, respectively). All three trapping methods indicated a similar pattern of biting activity by An. arabiensis and Culex spp., characterized by biting starting in the early evening (18:00–22:00), peaking when people are typically sleeping (22:00–05:00) and dropping off drastically toward the morning (05:00–07:00). Conclusions The modifications made to the METe design to improve user comfort and remove the need for protective clothing did not result in an underestimation of mosquito vector abundance nor misrepresentation of their biting time pattern. We recommend the METc for use over the METe design. Similarly, the BST demonstrated potential for monitoring malaria and filariasis vector densities in Tanzania. Graphical Abstracthttps://doi.org/10.1186/s13071-022-05549-4Malaria vectorsTrapping methodsBiting timesMosquito samplingAnopheles arabiensisCulex spp. |
spellingShingle | Victoria Githu Maneno E. Baravuga Asiya Mbarawa Hajirani M. Msuya Yeromin P. Mlacha Prosper P. Chaki Samson Kiware Nosrat Mirzai Heather M. Ferguson Nicodem J. Govella Comparative evaluation of different versions of exposure-free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in Tanzania Parasites & Vectors Malaria vectors Trapping methods Biting times Mosquito sampling Anopheles arabiensis Culex spp. |
title | Comparative evaluation of different versions of exposure-free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in Tanzania |
title_full | Comparative evaluation of different versions of exposure-free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in Tanzania |
title_fullStr | Comparative evaluation of different versions of exposure-free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in Tanzania |
title_full_unstemmed | Comparative evaluation of different versions of exposure-free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in Tanzania |
title_short | Comparative evaluation of different versions of exposure-free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in Tanzania |
title_sort | comparative evaluation of different versions of exposure free mosquito electrocuting traps and barrier screen trap for monitoring outdoor densities and biting time phenotypes by malaria and filariasis vectors in tanzania |
topic | Malaria vectors Trapping methods Biting times Mosquito sampling Anopheles arabiensis Culex spp. |
url | https://doi.org/10.1186/s13071-022-05549-4 |
work_keys_str_mv | AT victoriagithu comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT manenoebaravuga comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT asiyambarawa comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT hajiranimmsuya comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT yerominpmlacha comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT prosperpchaki comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT samsonkiware comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT nosratmirzai comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT heathermferguson comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania AT nicodemjgovella comparativeevaluationofdifferentversionsofexposurefreemosquitoelectrocutingtrapsandbarrierscreentrapformonitoringoutdoordensitiesandbitingtimephenotypesbymalariaandfilariasisvectorsintanzania |