Stability Control for Gob-Side Entry Retaining with Supercritical Retained Entry Width in Thick Coal Seam Longwall Mining

Taking gob-side entry retaining with large mining height (GER-LMH) of the 4211 panel in the Liujiazhuang coal mine as the engineering background, a numerical simulation was conducted to study the surrounding rock deformation, stress, and plastic zone distribution of GER-LMH with respect to retained...

Full description

Bibliographic Details
Main Authors: Zizheng Zhang, Xianyang Yu, Hai Wu, Min Deng
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/7/1375
Description
Summary:Taking gob-side entry retaining with large mining height (GER-LMH) of the 4211 panel in the Liujiazhuang coal mine as the engineering background, a numerical simulation was conducted to study the surrounding rock deformation, stress, and plastic zone distribution of GER-LMH with respect to retained entry width. The concept of critical retained entry width of GER-LMH was proposed. In view of the deformation characteristics of surrounding rock, an innovative approach to determine the critical width of GER-LMH based on the cusp catastrophe theory was proposed. The cusp catastrophe functions were set up by approximate roadside backfill body rib convergence and roof subsidence series with respect to different retained entry widths. The critical retained entry width of GER-LMH was 4.0 m according to bifurcation set equations. Surrounding rock stability control principle and technique of GER-LMH was proposed, including “rib strengthening and roof control„: road-in support with high pre-stress rockbolts and anchor cables, roadside backfill body construction technology with high-water quick consolidated filling materials and counter-pulled rockbolt, road-in reinforced support technology with hydraulic prop support and roof master. Field test and field monitoring results show that GER-LMH with supercritical retained entry width in the 4211 panel could meet the requirements for ventilation when the 4211 panel was retreating.
ISSN:1996-1073