Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPA

Multivariate pattern analysis (MVPA) has become vastly popular for analyzing functional neuroimaging data. At the group level, two main strategies are used in the literature. The standard one is hierarchical, combining the outcomes of within-subject decoding results in a second-level analysis. The a...

Full description

Bibliographic Details
Main Authors: Qi Wang, Bastien Cagna, Thierry Chaminade, Sylvain Takerkart
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811919307967
_version_ 1818042912537051136
author Qi Wang
Bastien Cagna
Thierry Chaminade
Sylvain Takerkart
author_facet Qi Wang
Bastien Cagna
Thierry Chaminade
Sylvain Takerkart
author_sort Qi Wang
collection DOAJ
description Multivariate pattern analysis (MVPA) has become vastly popular for analyzing functional neuroimaging data. At the group level, two main strategies are used in the literature. The standard one is hierarchical, combining the outcomes of within-subject decoding results in a second-level analysis. The alternative one, inter-subject pattern analysis, directly works at the group-level by using, e.g. a leave-one-subject-out cross-validation. This study provides a thorough comparison of these two group-level decoding schemes, using both a large number of artificial datasets where the size of the multivariate effect and the amount of inter-individual variability are parametrically controlled, as well as two real fMRI datasets comprising 15 and 39 subjects, respectively. We show that these two strategies uncover distinct significant regions with partial overlap, and that inter-subject pattern analysis is able to detect smaller effects and to facilitate the interpretation. The core source code and data are openly available, allowing to fully reproduce most of these results.
first_indexed 2024-12-10T08:53:51Z
format Article
id doaj.art-5a8522b4a2324fceb81607ce886b29ed
institution Directory Open Access Journal
issn 1095-9572
language English
last_indexed 2024-12-10T08:53:51Z
publishDate 2020-01-01
publisher Elsevier
record_format Article
series NeuroImage
spelling doaj.art-5a8522b4a2324fceb81607ce886b29ed2022-12-22T01:55:30ZengElsevierNeuroImage1095-95722020-01-01204116205Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPAQi Wang0Bastien Cagna1Thierry Chaminade2Sylvain Takerkart3Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS - Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13005, France; Laboratoire d’Informatique et Systèmes UMR 7020, Aix-Marseille Université, CNRS, Ecole Centrale de Marseille - Faculté des Sciences, 163 Avenue de Luminy, Case 901, Marseille, 13009, FranceInstitut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS - Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13005, FranceInstitut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS - Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13005, FranceInstitut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS - Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13005, France; Corresponding author.Multivariate pattern analysis (MVPA) has become vastly popular for analyzing functional neuroimaging data. At the group level, two main strategies are used in the literature. The standard one is hierarchical, combining the outcomes of within-subject decoding results in a second-level analysis. The alternative one, inter-subject pattern analysis, directly works at the group-level by using, e.g. a leave-one-subject-out cross-validation. This study provides a thorough comparison of these two group-level decoding schemes, using both a large number of artificial datasets where the size of the multivariate effect and the amount of inter-individual variability are parametrically controlled, as well as two real fMRI datasets comprising 15 and 39 subjects, respectively. We show that these two strategies uncover distinct significant regions with partial overlap, and that inter-subject pattern analysis is able to detect smaller effects and to facilitate the interpretation. The core source code and data are openly available, allowing to fully reproduce most of these results.http://www.sciencedirect.com/science/article/pii/S1053811919307967fMRIMVPAGroup analysis
spellingShingle Qi Wang
Bastien Cagna
Thierry Chaminade
Sylvain Takerkart
Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPA
NeuroImage
fMRI
MVPA
Group analysis
title Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPA
title_full Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPA
title_fullStr Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPA
title_full_unstemmed Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPA
title_short Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPA
title_sort inter subject pattern analysis a straightforward and powerful scheme for group level mvpa
topic fMRI
MVPA
Group analysis
url http://www.sciencedirect.com/science/article/pii/S1053811919307967
work_keys_str_mv AT qiwang intersubjectpatternanalysisastraightforwardandpowerfulschemeforgrouplevelmvpa
AT bastiencagna intersubjectpatternanalysisastraightforwardandpowerfulschemeforgrouplevelmvpa
AT thierrychaminade intersubjectpatternanalysisastraightforwardandpowerfulschemeforgrouplevelmvpa
AT sylvaintakerkart intersubjectpatternanalysisastraightforwardandpowerfulschemeforgrouplevelmvpa