Synthesis and Electrochemical Performance of Molybdenum Disulfide-Reduced Graphene Oxide-Polyaniline Ternary Composites for Supercapacitors

Molybdenum disulfide/reduced graphene oxide/polyaniline ternary composites (MoS2/rGO/PANI) were designed and synthesized by a facile two-step approach including hydrothermal and in situ polymerization process. The MoS2/rGO/PANI composites presented an interconnected 3D network architecture, in which...

Full description

Bibliographic Details
Main Authors: Li-Zhong Bai, Yan-Hui Wang, Shuai-Shuai Cheng, Fang Li, Zhi-Yi Zhang, Ya-Qing Liu
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-06-01
Series:Frontiers in Chemistry
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fchem.2018.00218/full
Description
Summary:Molybdenum disulfide/reduced graphene oxide/polyaniline ternary composites (MoS2/rGO/PANI) were designed and synthesized by a facile two-step approach including hydrothermal and in situ polymerization process. The MoS2/rGO/PANI composites presented an interconnected 3D network architecture, in which PANI uniformly coated the outer surface of the MoS2/rGO binary composite. The MoS2/rGO/PANI composites with a weight percent of 80% (MGP-80) exhibits the best specific capacitance (570 F g−1 at 1 A g−1) and cycling stabilities (78.6% retained capacitance after 500 cycles at 1 A g−1). The excellent electrochemical capacitive performance is attributed to its 3D network structure and the synergistic effects among the three components that make the composites obtain both pseudocapacitance and double-layer capacitance.
ISSN:2296-2646