Nontrivial solutions for fractional $q$-difference boundary value problems
In this paper, we investigate the existence of nontrivial solutions to the nonlinear $q$-fractional boundary value problem \begin{align*} &(D_q^\alpha y)(x)=-f(x,y(x)),\quad 0<x<1,\\ &y(0)=0=y(1), \end{align*} by applying a fixed point theorem in cones.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2010-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=530 |
_version_ | 1797830712265539584 |
---|---|
author | Rui Ferreira |
author_facet | Rui Ferreira |
author_sort | Rui Ferreira |
collection | DOAJ |
description | In this paper, we investigate the existence of nontrivial solutions to the nonlinear $q$-fractional boundary value problem
\begin{align*}
&(D_q^\alpha y)(x)=-f(x,y(x)),\quad 0<x<1,\\
&y(0)=0=y(1),
\end{align*}
by applying a fixed point theorem in cones. |
first_indexed | 2024-04-09T13:40:28Z |
format | Article |
id | doaj.art-5a992679fdd24ed6bf54227d5e6215a6 |
institution | Directory Open Access Journal |
issn | 1417-3875 |
language | English |
last_indexed | 2024-04-09T13:40:28Z |
publishDate | 2010-11-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj.art-5a992679fdd24ed6bf54227d5e6215a62023-05-09T07:53:00ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752010-11-0120107011010.14232/ejqtde.2010.1.70530Nontrivial solutions for fractional $q$-difference boundary value problemsRui Ferreira0Grupo F'isica-Matemática, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal.In this paper, we investigate the existence of nontrivial solutions to the nonlinear $q$-fractional boundary value problem \begin{align*} &(D_q^\alpha y)(x)=-f(x,y(x)),\quad 0<x<1,\\ &y(0)=0=y(1), \end{align*} by applying a fixed point theorem in cones.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=530 |
spellingShingle | Rui Ferreira Nontrivial solutions for fractional $q$-difference boundary value problems Electronic Journal of Qualitative Theory of Differential Equations |
title | Nontrivial solutions for fractional $q$-difference boundary value problems |
title_full | Nontrivial solutions for fractional $q$-difference boundary value problems |
title_fullStr | Nontrivial solutions for fractional $q$-difference boundary value problems |
title_full_unstemmed | Nontrivial solutions for fractional $q$-difference boundary value problems |
title_short | Nontrivial solutions for fractional $q$-difference boundary value problems |
title_sort | nontrivial solutions for fractional q difference boundary value problems |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=530 |
work_keys_str_mv | AT ruiferreira nontrivialsolutionsforfractionalqdifferenceboundaryvalueproblems |