An Urban Tree (Tabebuia argentea) Exhibits Higher Sensitivity to Environmental Conditions than an Urban Palm (Ptychosperma macarthurii) Growing in the Same Roof Garden: An Implication for Sustainable Urban Water Use
Roof gardening is popular for increasing green space in cities due to the restricted urban areas. However, when watering plants on a roof garden, one should consider loading capacity of the roof, which may limit water supply to the plants therein. To improve the efficiency in irrigating trees in a...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Environmental Research Institute, Chulalongkorn University
2023-03-01
|
Series: | Applied Environmental Research |
Subjects: | |
Online Access: | https://ph01.tci-thaijo.org/index.php/aer/article/view/252010 |
_version_ | 1797628229365792768 |
---|---|
author | Ratchanon Ampornpitak Prangwilai Khobpee Weerapong Unawong Nisa Leksungnoen Pantana Tor-ngern |
author_facet | Ratchanon Ampornpitak Prangwilai Khobpee Weerapong Unawong Nisa Leksungnoen Pantana Tor-ngern |
author_sort | Ratchanon Ampornpitak |
collection | DOAJ |
description |
Roof gardening is popular for increasing green space in cities due to the restricted urban areas. However, when watering plants on a roof garden, one should consider loading capacity of the roof, which may limit water supply to the plants therein. To improve the efficiency in irrigating trees in a roof garden, we evaluated plant water status, represented by midday leaf water potential (ΨL), and leaf gas exchange parameters including stomatal conductance (gs) and net photosynthesis (An) of a tree (Tabebuia argentea, Ta) and a palm (Ptychosperma macarthurii, Pm) species, which dominate the garden. The ΨL mediated responses of gs and An, regulating plant water use and growth, to soil moisture. Results showed that ΨL of Ta significantly varied with changes in soil moisture, being low at low and high soil moisture. Nevertheless, gs of Ta linearly decreased when ΨL increased, suggesting a stronger response of gs to atmospheric demand. In contrast, no significant responses among the study variables were observed in Pm. For both species, An initially increased with gs and saturated after gs reached 200 mmol m-2 s-1, indicating similar stomatal regulation on atmospheric carbon dioxide absorption. The limited space for root growth and the location with surrounded building walls contributed to unconventional response patterns observed in Ta. Nonetheless, our results suggested that Ta was more sensitive to changing environments, especially the atmospheric demand, than Pm. Additionally, Ta should be irrigated during daytime and when atmospheric vapor pressure deficit is less than 2.6 kPa to allow high photosynthesis and evaporative cooling while Pm may be watered less frequently to reduce the roof’s loading and save water. This initial investigation implied that maintaining urban trees using appropriate irrigation that is specific to tree species is the key to maximize benefits from urban trees and optimize urban water use.
|
first_indexed | 2024-03-11T10:36:23Z |
format | Article |
id | doaj.art-5a9a675e52014ba1a966328226f3c584 |
institution | Directory Open Access Journal |
issn | 2287-075X |
language | English |
last_indexed | 2024-03-11T10:36:23Z |
publishDate | 2023-03-01 |
publisher | Environmental Research Institute, Chulalongkorn University |
record_format | Article |
series | Applied Environmental Research |
spelling | doaj.art-5a9a675e52014ba1a966328226f3c5842023-11-14T10:42:28ZengEnvironmental Research Institute, Chulalongkorn UniversityApplied Environmental Research2287-075X2023-03-01451An Urban Tree (Tabebuia argentea) Exhibits Higher Sensitivity to Environmental Conditions than an Urban Palm (Ptychosperma macarthurii) Growing in the Same Roof Garden: An Implication for Sustainable Urban Water UseRatchanon Ampornpitak0Prangwilai Khobpee1Weerapong Unawong2Nisa Leksungnoen3Pantana Tor-ngern4Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, ThailandDepartment of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, ThailandCenter of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, ThailandDepartment of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, ThailandDepartment of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand Roof gardening is popular for increasing green space in cities due to the restricted urban areas. However, when watering plants on a roof garden, one should consider loading capacity of the roof, which may limit water supply to the plants therein. To improve the efficiency in irrigating trees in a roof garden, we evaluated plant water status, represented by midday leaf water potential (ΨL), and leaf gas exchange parameters including stomatal conductance (gs) and net photosynthesis (An) of a tree (Tabebuia argentea, Ta) and a palm (Ptychosperma macarthurii, Pm) species, which dominate the garden. The ΨL mediated responses of gs and An, regulating plant water use and growth, to soil moisture. Results showed that ΨL of Ta significantly varied with changes in soil moisture, being low at low and high soil moisture. Nevertheless, gs of Ta linearly decreased when ΨL increased, suggesting a stronger response of gs to atmospheric demand. In contrast, no significant responses among the study variables were observed in Pm. For both species, An initially increased with gs and saturated after gs reached 200 mmol m-2 s-1, indicating similar stomatal regulation on atmospheric carbon dioxide absorption. The limited space for root growth and the location with surrounded building walls contributed to unconventional response patterns observed in Ta. Nonetheless, our results suggested that Ta was more sensitive to changing environments, especially the atmospheric demand, than Pm. Additionally, Ta should be irrigated during daytime and when atmospheric vapor pressure deficit is less than 2.6 kPa to allow high photosynthesis and evaporative cooling while Pm may be watered less frequently to reduce the roof’s loading and save water. This initial investigation implied that maintaining urban trees using appropriate irrigation that is specific to tree species is the key to maximize benefits from urban trees and optimize urban water use. https://ph01.tci-thaijo.org/index.php/aer/article/view/252010Roof gardenWater managementPlant water statusUrban treesLeaf gas exchange |
spellingShingle | Ratchanon Ampornpitak Prangwilai Khobpee Weerapong Unawong Nisa Leksungnoen Pantana Tor-ngern An Urban Tree (Tabebuia argentea) Exhibits Higher Sensitivity to Environmental Conditions than an Urban Palm (Ptychosperma macarthurii) Growing in the Same Roof Garden: An Implication for Sustainable Urban Water Use Applied Environmental Research Roof garden Water management Plant water status Urban trees Leaf gas exchange |
title | An Urban Tree (Tabebuia argentea) Exhibits Higher Sensitivity to Environmental Conditions than an Urban Palm (Ptychosperma macarthurii) Growing in the Same Roof Garden: An Implication for Sustainable Urban Water Use |
title_full | An Urban Tree (Tabebuia argentea) Exhibits Higher Sensitivity to Environmental Conditions than an Urban Palm (Ptychosperma macarthurii) Growing in the Same Roof Garden: An Implication for Sustainable Urban Water Use |
title_fullStr | An Urban Tree (Tabebuia argentea) Exhibits Higher Sensitivity to Environmental Conditions than an Urban Palm (Ptychosperma macarthurii) Growing in the Same Roof Garden: An Implication for Sustainable Urban Water Use |
title_full_unstemmed | An Urban Tree (Tabebuia argentea) Exhibits Higher Sensitivity to Environmental Conditions than an Urban Palm (Ptychosperma macarthurii) Growing in the Same Roof Garden: An Implication for Sustainable Urban Water Use |
title_short | An Urban Tree (Tabebuia argentea) Exhibits Higher Sensitivity to Environmental Conditions than an Urban Palm (Ptychosperma macarthurii) Growing in the Same Roof Garden: An Implication for Sustainable Urban Water Use |
title_sort | urban tree tabebuia argentea exhibits higher sensitivity to environmental conditions than an urban palm ptychosperma macarthurii growing in the same roof garden an implication for sustainable urban water use |
topic | Roof garden Water management Plant water status Urban trees Leaf gas exchange |
url | https://ph01.tci-thaijo.org/index.php/aer/article/view/252010 |
work_keys_str_mv | AT ratchanonampornpitak anurbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT prangwilaikhobpee anurbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT weerapongunawong anurbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT nisaleksungnoen anurbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT pantanatorngern anurbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT ratchanonampornpitak urbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT prangwilaikhobpee urbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT weerapongunawong urbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT nisaleksungnoen urbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse AT pantanatorngern urbantreetabebuiaargenteaexhibitshighersensitivitytoenvironmentalconditionsthananurbanpalmptychospermamacarthuriigrowinginthesameroofgardenanimplicationforsustainableurbanwateruse |