Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait

Analyzing the hydrochemical composition in thermal springs is an advantageous method for studying the coupling mechanism of the deep and shallow fluids in active fault zones. Here we conducted sampling in 30 thermal springs near fault zones in Fujian Province, and the major elements, trace elements,...

Full description

Bibliographic Details
Main Authors: Bo Wang, Xiaocheng Zhou, Yongsheng Zhou, Yucong Yan, Ying Li, Shupei Ouyang, Fengli Liu, Jun Zhong
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/24/3523
Description
Summary:Analyzing the hydrochemical composition in thermal springs is an advantageous method for studying the coupling mechanism of the deep and shallow fluids in active fault zones. Here we conducted sampling in 30 thermal springs near fault zones in Fujian Province, and the major elements, trace elements, silica, stable isotopes (δD and δ<sup>18</sup>O) and strontium isotopes were tested in the laboratory. The results show that (1) the thermal springs in the study area can be divided into six types according to the content of the major elements: HCO<sub>3</sub>-Na, HCO<sub>3</sub>·SO<sub>4</sub>-Na, Cl·HCO<sub>3</sub>-Na, Cl-Na, Cl-Na·Ca and HCO<sub>3</sub>·SO<sub>4</sub>-Ca; (2) hydrogen and oxygen isotopes indicate that precipitation is the main source of recharge for thermal springs in the study area, and the recharge height is between 258 m and 1859 m; (3) the content of SiO<sub>2</sub> in the thermal spring varies from 18.1 mg/L to 59.3 mg/L. The geothermal reservoir temperature calculated is 90~226 °C, and the circulation depth is 2.9~5.4 km, except for the W10 thermal spring, whose circulation depth is 8.4 km; and (4) the <sup>87</sup>Sr/<sup>86</sup>Sr of the thermal springs in southwestern Fujian and eastern Fujian has obviously different characteristics, indicating the influence of different rock formations on the groundwater cycle process. Additionally, a continuous measurement of the main anions and cations was performed in five thermal springs every three days since January 2020. There were obvious abnormal changes in the hydrochemical compositions, chlorine in four of the five springs, sodium at three springs, and four ions at one spring, which all showed abnormal high-value changes by 15% to 80%, and which occurred 85~168 days prior to the <i>M</i>6.1 earthquake in Hualien, Taiwan. An inspiration could be provided for obtaining effective earthquake precursor anomalies by monitoring the change in ion concentration in thermal springs.
ISSN:2073-4441