Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait
Analyzing the hydrochemical composition in thermal springs is an advantageous method for studying the coupling mechanism of the deep and shallow fluids in active fault zones. Here we conducted sampling in 30 thermal springs near fault zones in Fujian Province, and the major elements, trace elements,...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/13/24/3523 |
_version_ | 1797499835981496320 |
---|---|
author | Bo Wang Xiaocheng Zhou Yongsheng Zhou Yucong Yan Ying Li Shupei Ouyang Fengli Liu Jun Zhong |
author_facet | Bo Wang Xiaocheng Zhou Yongsheng Zhou Yucong Yan Ying Li Shupei Ouyang Fengli Liu Jun Zhong |
author_sort | Bo Wang |
collection | DOAJ |
description | Analyzing the hydrochemical composition in thermal springs is an advantageous method for studying the coupling mechanism of the deep and shallow fluids in active fault zones. Here we conducted sampling in 30 thermal springs near fault zones in Fujian Province, and the major elements, trace elements, silica, stable isotopes (δD and δ<sup>18</sup>O) and strontium isotopes were tested in the laboratory. The results show that (1) the thermal springs in the study area can be divided into six types according to the content of the major elements: HCO<sub>3</sub>-Na, HCO<sub>3</sub>·SO<sub>4</sub>-Na, Cl·HCO<sub>3</sub>-Na, Cl-Na, Cl-Na·Ca and HCO<sub>3</sub>·SO<sub>4</sub>-Ca; (2) hydrogen and oxygen isotopes indicate that precipitation is the main source of recharge for thermal springs in the study area, and the recharge height is between 258 m and 1859 m; (3) the content of SiO<sub>2</sub> in the thermal spring varies from 18.1 mg/L to 59.3 mg/L. The geothermal reservoir temperature calculated is 90~226 °C, and the circulation depth is 2.9~5.4 km, except for the W10 thermal spring, whose circulation depth is 8.4 km; and (4) the <sup>87</sup>Sr/<sup>86</sup>Sr of the thermal springs in southwestern Fujian and eastern Fujian has obviously different characteristics, indicating the influence of different rock formations on the groundwater cycle process. Additionally, a continuous measurement of the main anions and cations was performed in five thermal springs every three days since January 2020. There were obvious abnormal changes in the hydrochemical compositions, chlorine in four of the five springs, sodium at three springs, and four ions at one spring, which all showed abnormal high-value changes by 15% to 80%, and which occurred 85~168 days prior to the <i>M</i>6.1 earthquake in Hualien, Taiwan. An inspiration could be provided for obtaining effective earthquake precursor anomalies by monitoring the change in ion concentration in thermal springs. |
first_indexed | 2024-03-10T03:53:09Z |
format | Article |
id | doaj.art-5ada144a70c049e987db926b83205297 |
institution | Directory Open Access Journal |
issn | 2073-4441 |
language | English |
last_indexed | 2024-03-10T03:53:09Z |
publishDate | 2021-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Water |
spelling | doaj.art-5ada144a70c049e987db926b832052972023-11-23T11:00:30ZengMDPI AGWater2073-44412021-12-011324352310.3390/w13243523Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan StraitBo Wang0Xiaocheng Zhou1Yongsheng Zhou2Yucong Yan3Ying Li4Shupei Ouyang5Fengli Liu6Jun Zhong7State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, ChinaUnited Laboratory of High-Pressure Physics and Earthquake Science, Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, CEA, Beijing 100036, ChinaState Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, ChinaUnited Laboratory of High-Pressure Physics and Earthquake Science, Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, CEA, Beijing 100036, ChinaUnited Laboratory of High-Pressure Physics and Earthquake Science, Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, CEA, Beijing 100036, ChinaUnited Laboratory of High-Pressure Physics and Earthquake Science, Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, CEA, Beijing 100036, ChinaUnited Laboratory of High-Pressure Physics and Earthquake Science, Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, CEA, Beijing 100036, ChinaChina Earthquake Networks Center, Beijing 100045, ChinaAnalyzing the hydrochemical composition in thermal springs is an advantageous method for studying the coupling mechanism of the deep and shallow fluids in active fault zones. Here we conducted sampling in 30 thermal springs near fault zones in Fujian Province, and the major elements, trace elements, silica, stable isotopes (δD and δ<sup>18</sup>O) and strontium isotopes were tested in the laboratory. The results show that (1) the thermal springs in the study area can be divided into six types according to the content of the major elements: HCO<sub>3</sub>-Na, HCO<sub>3</sub>·SO<sub>4</sub>-Na, Cl·HCO<sub>3</sub>-Na, Cl-Na, Cl-Na·Ca and HCO<sub>3</sub>·SO<sub>4</sub>-Ca; (2) hydrogen and oxygen isotopes indicate that precipitation is the main source of recharge for thermal springs in the study area, and the recharge height is between 258 m and 1859 m; (3) the content of SiO<sub>2</sub> in the thermal spring varies from 18.1 mg/L to 59.3 mg/L. The geothermal reservoir temperature calculated is 90~226 °C, and the circulation depth is 2.9~5.4 km, except for the W10 thermal spring, whose circulation depth is 8.4 km; and (4) the <sup>87</sup>Sr/<sup>86</sup>Sr of the thermal springs in southwestern Fujian and eastern Fujian has obviously different characteristics, indicating the influence of different rock formations on the groundwater cycle process. Additionally, a continuous measurement of the main anions and cations was performed in five thermal springs every three days since January 2020. There were obvious abnormal changes in the hydrochemical compositions, chlorine in four of the five springs, sodium at three springs, and four ions at one spring, which all showed abnormal high-value changes by 15% to 80%, and which occurred 85~168 days prior to the <i>M</i>6.1 earthquake in Hualien, Taiwan. An inspiration could be provided for obtaining effective earthquake precursor anomalies by monitoring the change in ion concentration in thermal springs.https://www.mdpi.com/2073-4441/13/24/3523thermal springhydrochemical compositiongeothermal reservoir temperatureseismic activityTaiwan strait |
spellingShingle | Bo Wang Xiaocheng Zhou Yongsheng Zhou Yucong Yan Ying Li Shupei Ouyang Fengli Liu Jun Zhong Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait Water thermal spring hydrochemical composition geothermal reservoir temperature seismic activity Taiwan strait |
title | Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait |
title_full | Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait |
title_fullStr | Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait |
title_full_unstemmed | Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait |
title_short | Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait |
title_sort | hydrogeochemistry and precursory anomalies in thermal springs of fujian southeastern china associated with earthquakes in the taiwan strait |
topic | thermal spring hydrochemical composition geothermal reservoir temperature seismic activity Taiwan strait |
url | https://www.mdpi.com/2073-4441/13/24/3523 |
work_keys_str_mv | AT bowang hydrogeochemistryandprecursoryanomaliesinthermalspringsoffujiansoutheasternchinaassociatedwithearthquakesinthetaiwanstrait AT xiaochengzhou hydrogeochemistryandprecursoryanomaliesinthermalspringsoffujiansoutheasternchinaassociatedwithearthquakesinthetaiwanstrait AT yongshengzhou hydrogeochemistryandprecursoryanomaliesinthermalspringsoffujiansoutheasternchinaassociatedwithearthquakesinthetaiwanstrait AT yucongyan hydrogeochemistryandprecursoryanomaliesinthermalspringsoffujiansoutheasternchinaassociatedwithearthquakesinthetaiwanstrait AT yingli hydrogeochemistryandprecursoryanomaliesinthermalspringsoffujiansoutheasternchinaassociatedwithearthquakesinthetaiwanstrait AT shupeiouyang hydrogeochemistryandprecursoryanomaliesinthermalspringsoffujiansoutheasternchinaassociatedwithearthquakesinthetaiwanstrait AT fengliliu hydrogeochemistryandprecursoryanomaliesinthermalspringsoffujiansoutheasternchinaassociatedwithearthquakesinthetaiwanstrait AT junzhong hydrogeochemistryandprecursoryanomaliesinthermalspringsoffujiansoutheasternchinaassociatedwithearthquakesinthetaiwanstrait |