Hamiltonian Normal Cayley Graphs
A variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ∈ G we have that g−1Sg = S. In this paper we present so...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zielona Góra
2019-08-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.2214 |
_version_ | 1797704389404655616 |
---|---|
author | Montellano-Ballesteros Juan José Arguello Anahy Santiago |
author_facet | Montellano-Ballesteros Juan José Arguello Anahy Santiago |
author_sort | Montellano-Ballesteros Juan José |
collection | DOAJ |
description | A variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ∈ G we have that g−1Sg = S. In this paper we present some conditions on the connection set of a normal Cayley graph which imply the existence of a hamiltonian cycle in the graph. |
first_indexed | 2024-03-12T05:19:39Z |
format | Article |
id | doaj.art-5addacd1cb154de181b98b258003a7df |
institution | Directory Open Access Journal |
issn | 2083-5892 |
language | English |
last_indexed | 2024-03-12T05:19:39Z |
publishDate | 2019-08-01 |
publisher | University of Zielona Góra |
record_format | Article |
series | Discussiones Mathematicae Graph Theory |
spelling | doaj.art-5addacd1cb154de181b98b258003a7df2023-09-03T07:47:16ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922019-08-0139373174010.7151/dmgt.2214dmgt.2214Hamiltonian Normal Cayley GraphsMontellano-Ballesteros Juan José0Arguello Anahy Santiago1Instituto de MatemáticasUniversidad Nacional Autónoma de México Ciudad Universitaria, México, D.F., C.P. 04510, MéxicoInstituto de MatemáticasUniversidad Nacional Autónoma de México Ciudad Universitaria, México, D.F., C.P. 04510, MéxicoA variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ∈ G we have that g−1Sg = S. In this paper we present some conditions on the connection set of a normal Cayley graph which imply the existence of a hamiltonian cycle in the graph.https://doi.org/10.7151/dmgt.2214cayley graphhamiltonian cyclenormal connection set05c4505c99 |
spellingShingle | Montellano-Ballesteros Juan José Arguello Anahy Santiago Hamiltonian Normal Cayley Graphs Discussiones Mathematicae Graph Theory cayley graph hamiltonian cycle normal connection set 05c45 05c99 |
title | Hamiltonian Normal Cayley Graphs |
title_full | Hamiltonian Normal Cayley Graphs |
title_fullStr | Hamiltonian Normal Cayley Graphs |
title_full_unstemmed | Hamiltonian Normal Cayley Graphs |
title_short | Hamiltonian Normal Cayley Graphs |
title_sort | hamiltonian normal cayley graphs |
topic | cayley graph hamiltonian cycle normal connection set 05c45 05c99 |
url | https://doi.org/10.7151/dmgt.2214 |
work_keys_str_mv | AT montellanoballesterosjuanjose hamiltoniannormalcayleygraphs AT arguelloanahysantiago hamiltoniannormalcayleygraphs |