Hamiltonian Normal Cayley Graphs

A variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ∈ G we have that g−1Sg = S. In this paper we present so...

Full description

Bibliographic Details
Main Authors: Montellano-Ballesteros Juan José, Arguello Anahy Santiago
Format: Article
Language:English
Published: University of Zielona Góra 2019-08-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.2214
_version_ 1797704389404655616
author Montellano-Ballesteros Juan José
Arguello Anahy Santiago
author_facet Montellano-Ballesteros Juan José
Arguello Anahy Santiago
author_sort Montellano-Ballesteros Juan José
collection DOAJ
description A variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ∈ G we have that g−1Sg = S. In this paper we present some conditions on the connection set of a normal Cayley graph which imply the existence of a hamiltonian cycle in the graph.
first_indexed 2024-03-12T05:19:39Z
format Article
id doaj.art-5addacd1cb154de181b98b258003a7df
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T05:19:39Z
publishDate 2019-08-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-5addacd1cb154de181b98b258003a7df2023-09-03T07:47:16ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922019-08-0139373174010.7151/dmgt.2214dmgt.2214Hamiltonian Normal Cayley GraphsMontellano-Ballesteros Juan José0Arguello Anahy Santiago1Instituto de MatemáticasUniversidad Nacional Autónoma de México Ciudad Universitaria, México, D.F., C.P. 04510, MéxicoInstituto de MatemáticasUniversidad Nacional Autónoma de México Ciudad Universitaria, México, D.F., C.P. 04510, MéxicoA variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ∈ G we have that g−1Sg = S. In this paper we present some conditions on the connection set of a normal Cayley graph which imply the existence of a hamiltonian cycle in the graph.https://doi.org/10.7151/dmgt.2214cayley graphhamiltonian cyclenormal connection set05c4505c99
spellingShingle Montellano-Ballesteros Juan José
Arguello Anahy Santiago
Hamiltonian Normal Cayley Graphs
Discussiones Mathematicae Graph Theory
cayley graph
hamiltonian cycle
normal connection set
05c45
05c99
title Hamiltonian Normal Cayley Graphs
title_full Hamiltonian Normal Cayley Graphs
title_fullStr Hamiltonian Normal Cayley Graphs
title_full_unstemmed Hamiltonian Normal Cayley Graphs
title_short Hamiltonian Normal Cayley Graphs
title_sort hamiltonian normal cayley graphs
topic cayley graph
hamiltonian cycle
normal connection set
05c45
05c99
url https://doi.org/10.7151/dmgt.2214
work_keys_str_mv AT montellanoballesterosjuanjose hamiltoniannormalcayleygraphs
AT arguelloanahysantiago hamiltoniannormalcayleygraphs