Geometric Model of Black Hole Quantum N-portrait, Extradimensions and Thermodynamics

Recently a short scale modified black hole metric, known as holographic metric, has been proposed in order to capture the self-complete character of gravity. In this paper we show that such a metric can reproduce some geometric features expected from the quantum N-portrait beyond the semi-classical...

Full description

Bibliographic Details
Main Authors: Antonia M. Frassino, Sven Köppel, Piero Nicolini
Format: Article
Language:English
Published: MDPI AG 2016-05-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/18/5/181
Description
Summary:Recently a short scale modified black hole metric, known as holographic metric, has been proposed in order to capture the self-complete character of gravity. In this paper we show that such a metric can reproduce some geometric features expected from the quantum N-portrait beyond the semi-classical limit. We show that for a generic N this corresponds to having an effective energy momentum tensor in Einstein equations or, equivalently, non-local terms in the gravity action. We also consider the higher dimensional extension of the metric and the case of an AdS cosmological term. We provide a detailed thermodynamic analysis of both cases, with particular reference to the repercussions on the Hawking-Page phase transition.
ISSN:1099-4300