Multilocus Intron Trees Reveal Extensive Male-Biased Homogenization of Ancient Populations of Chamois (Rupicapra spp.) across Europe during Late Pleistocene.

The inferred phylogenetic relationships between organisms often depend on the molecular marker studied due to the diverse evolutionary mode and unlike evolutionary histories of different parts of the genome. Previous studies have shown conflicting patterns of differentiation of mtDNA and several nuc...

Full description

Bibliographic Details
Main Authors: Trinidad Pérez, Margarita Fernández, Sabine E Hammer, Ana Domínguez
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5287467?pdf=render
_version_ 1819100732044869632
author Trinidad Pérez
Margarita Fernández
Sabine E Hammer
Ana Domínguez
author_facet Trinidad Pérez
Margarita Fernández
Sabine E Hammer
Ana Domínguez
author_sort Trinidad Pérez
collection DOAJ
description The inferred phylogenetic relationships between organisms often depend on the molecular marker studied due to the diverse evolutionary mode and unlike evolutionary histories of different parts of the genome. Previous studies have shown conflicting patterns of differentiation of mtDNA and several nuclear markers in chamois (genus Rupicapra) that indicate a complex evolutionary picture. Chamois are mountain caprine that inhabit most of the medium to high altitude mountain ranges of southern Eurasia. The most accepted taxonomical classification considers two species, R. pyrenaica (with the subspecies parva, pyrenaica and ornata) from southwestern Europe and R. rupicapra (with the subspecies cartusiana, rupicapra, tatrica, carpatica, balcanica, asiatica and caucasica) from northeastern Europe. Phylogenies of mtDNA revealed three very old clades (from the early Pleistocene, 1.9 Mya) with a clear geographical signal. Here we analyze a set of 23 autosomal introns, comprising 15,411 nucleotides, in 14 individuals covering the 10 chamois subspecies. Introns offered an evolutionary scenario that contrasts with mtDNA. The nucleotidic diversity was 0.0013± 0.0002, at the low range of what is found in other mammals even if a single species is considered. A coalescent multilocus analysis with *BEAST indicated that introns diversified 88 Kya, in the late Pleistocene, and the effective population size at the root was lower than 10,000 individuals. The dispersal of some few migrant males should have rapidly spread trough the populations of chamois, given the homogeneity of intron sequences. The striking differences between mitochondrial and nuclear markers can be attributed to strong female philopatry and extensive male dispersal. Our results highlight the need of analyzing multiple and varied genome components to capture the complex evolutionary history of organisms.
first_indexed 2024-12-22T01:07:27Z
format Article
id doaj.art-5af2d7e10fc84c8197fcb56acc444136
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-22T01:07:27Z
publishDate 2017-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-5af2d7e10fc84c8197fcb56acc4441362022-12-21T18:44:03ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01122e017039210.1371/journal.pone.0170392Multilocus Intron Trees Reveal Extensive Male-Biased Homogenization of Ancient Populations of Chamois (Rupicapra spp.) across Europe during Late Pleistocene.Trinidad PérezMargarita FernándezSabine E HammerAna DomínguezThe inferred phylogenetic relationships between organisms often depend on the molecular marker studied due to the diverse evolutionary mode and unlike evolutionary histories of different parts of the genome. Previous studies have shown conflicting patterns of differentiation of mtDNA and several nuclear markers in chamois (genus Rupicapra) that indicate a complex evolutionary picture. Chamois are mountain caprine that inhabit most of the medium to high altitude mountain ranges of southern Eurasia. The most accepted taxonomical classification considers two species, R. pyrenaica (with the subspecies parva, pyrenaica and ornata) from southwestern Europe and R. rupicapra (with the subspecies cartusiana, rupicapra, tatrica, carpatica, balcanica, asiatica and caucasica) from northeastern Europe. Phylogenies of mtDNA revealed three very old clades (from the early Pleistocene, 1.9 Mya) with a clear geographical signal. Here we analyze a set of 23 autosomal introns, comprising 15,411 nucleotides, in 14 individuals covering the 10 chamois subspecies. Introns offered an evolutionary scenario that contrasts with mtDNA. The nucleotidic diversity was 0.0013± 0.0002, at the low range of what is found in other mammals even if a single species is considered. A coalescent multilocus analysis with *BEAST indicated that introns diversified 88 Kya, in the late Pleistocene, and the effective population size at the root was lower than 10,000 individuals. The dispersal of some few migrant males should have rapidly spread trough the populations of chamois, given the homogeneity of intron sequences. The striking differences between mitochondrial and nuclear markers can be attributed to strong female philopatry and extensive male dispersal. Our results highlight the need of analyzing multiple and varied genome components to capture the complex evolutionary history of organisms.http://europepmc.org/articles/PMC5287467?pdf=render
spellingShingle Trinidad Pérez
Margarita Fernández
Sabine E Hammer
Ana Domínguez
Multilocus Intron Trees Reveal Extensive Male-Biased Homogenization of Ancient Populations of Chamois (Rupicapra spp.) across Europe during Late Pleistocene.
PLoS ONE
title Multilocus Intron Trees Reveal Extensive Male-Biased Homogenization of Ancient Populations of Chamois (Rupicapra spp.) across Europe during Late Pleistocene.
title_full Multilocus Intron Trees Reveal Extensive Male-Biased Homogenization of Ancient Populations of Chamois (Rupicapra spp.) across Europe during Late Pleistocene.
title_fullStr Multilocus Intron Trees Reveal Extensive Male-Biased Homogenization of Ancient Populations of Chamois (Rupicapra spp.) across Europe during Late Pleistocene.
title_full_unstemmed Multilocus Intron Trees Reveal Extensive Male-Biased Homogenization of Ancient Populations of Chamois (Rupicapra spp.) across Europe during Late Pleistocene.
title_short Multilocus Intron Trees Reveal Extensive Male-Biased Homogenization of Ancient Populations of Chamois (Rupicapra spp.) across Europe during Late Pleistocene.
title_sort multilocus intron trees reveal extensive male biased homogenization of ancient populations of chamois rupicapra spp across europe during late pleistocene
url http://europepmc.org/articles/PMC5287467?pdf=render
work_keys_str_mv AT trinidadperez multilocusintrontreesrevealextensivemalebiasedhomogenizationofancientpopulationsofchamoisrupicaprasppacrosseuropeduringlatepleistocene
AT margaritafernandez multilocusintrontreesrevealextensivemalebiasedhomogenizationofancientpopulationsofchamoisrupicaprasppacrosseuropeduringlatepleistocene
AT sabineehammer multilocusintrontreesrevealextensivemalebiasedhomogenizationofancientpopulationsofchamoisrupicaprasppacrosseuropeduringlatepleistocene
AT anadominguez multilocusintrontreesrevealextensivemalebiasedhomogenizationofancientpopulationsofchamoisrupicaprasppacrosseuropeduringlatepleistocene