Existence, Uniqueness, and Stability Analysis of the Probabilistic Functional Equation Emerging in Mathematical Biology and the Theory of Learning

Probabilistic functional equations have been used to analyze various models in computational biology and learning theory. It is worth noting that they are linked to the symmetry of a system of functional equations’ transformation. Our objective is to propose a generic probabilistic functional equati...

Full description

Bibliographic Details
Main Authors: Ali Turab, Won-Gil Park, Wajahat Ali
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/8/1313
Description
Summary:Probabilistic functional equations have been used to analyze various models in computational biology and learning theory. It is worth noting that they are linked to the symmetry of a system of functional equations’ transformation. Our objective is to propose a generic probabilistic functional equation that can cover most of the mathematical models addressed in the existing literature. The notable fixed-point tools are utilized to examine the existence, uniqueness, and stability of the suggested equation’s solution. Two examples are also given to emphasize the significance of our findings.
ISSN:2073-8994