Chip-Firing and Rotor-Routing on $\mathbb{Z}^d$ and on Trees

The sandpile group of a graph $G$ is an abelian group whose order is the number of spanning trees of $G$. We find the decomposition of the sandpile group into cyclic subgroups when $G$ is a regular tree with the leaves are collapsed to a single vertex. This result can be used to understand the behav...

Full description

Bibliographic Details
Main Authors: Itamar Landau, Lionel Levine, Yuval Peres
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2008-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3618/pdf
Description
Summary:The sandpile group of a graph $G$ is an abelian group whose order is the number of spanning trees of $G$. We find the decomposition of the sandpile group into cyclic subgroups when $G$ is a regular tree with the leaves are collapsed to a single vertex. This result can be used to understand the behavior of the rotor-router model, a deterministic analogue of random walk studied first by physicists and more recently rediscovered by combinatorialists. Several years ago, Jim Propp simulated a simple process called rotor-router aggregation and found that it produces a near perfect disk in the integer lattice $\mathbb{Z}^2$. We prove that this shape is close to circular, although it remains a challenge to explain the near perfect circularity produced by simulations. In the regular tree, we use the sandpile group to prove that rotor-router aggregation started from an acyclic initial condition yields a perfect ball.
ISSN:1365-8050