Operation of the Prototype Device for Induction Heating of Railway Turnouts at Various Operating Frequencies

Devices for electric heating of railroad turnouts are elements of the railway infrastructure protecting railroad turnouts against blocking them by snow and ice in winter. They often operate based on the principle of resistance heating but other solutions are also emerging. In this paper, one of such...

Full description

Bibliographic Details
Main Authors: Robert Żelazny, Paweł Jabłoński, Tomasz Szczegielniak
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/2/476
Description
Summary:Devices for electric heating of railroad turnouts are elements of the railway infrastructure protecting railroad turnouts against blocking them by snow and ice in winter. They often operate based on the principle of resistance heating but other solutions are also emerging. In this paper, one of such new solutions using the phenomenon of electromagnetic induction was presented and tested under various conditions. In comparison with traditional resistive heaters, the inductive ones offer heat distribution directly to ice and snow without intermediation of rails. Moreover, they can use a wide range spectrum of frequency to shorten the melting time. The resistive and inductive devices were tested with respect to melting time, temperatures and energy consumption. It follows that the induction-based device offers much lower energy consumption at a level of 30%–60% of that by resistive heater. The details depend on frequency used, initial temperature and number of induction devices of action assumed equivalent to the resistive one. Inductive heating of turnouts also offers shorter times of operation, which are obtained for frequencies in the range 40–70 kHz. The inductive device was also tested with respect to magnetic field levels around it to assess its possible influence on nearby infrastructure.
ISSN:1996-1073