Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia

Autosomal recessive Achromatopsia (ACHM) is a rare inherited disorder associated with dysfunctional cone photoreceptors resulting in a congenital absence of cone input to visual cortex. This might lead to distinct changes in cortical architecture with a negative impact on the success of gene augment...

Full description

Bibliographic Details
Main Authors: Barbara Molz, Anne Herbik, Heidi A. Baseler, Pieter B. de Best, Richard W. Vernon, Noa Raz, Andre D. Gouws, Khazar Ahmadi, Rebecca Lowndes, Rebecca J. McLean, Irene Gottlob, Susanne Kohl, Lars Choritz, John Maguire, Martin Kanowski, Barbara Käsmann-Kellner, Ilse Wieland, Eyal Banin, Netta Levin, Michael B. Hoffmann, Antony B. Morland
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:NeuroImage: Clinical
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213158221003697
_version_ 1828857056863453184
author Barbara Molz
Anne Herbik
Heidi A. Baseler
Pieter B. de Best
Richard W. Vernon
Noa Raz
Andre D. Gouws
Khazar Ahmadi
Rebecca Lowndes
Rebecca J. McLean
Irene Gottlob
Susanne Kohl
Lars Choritz
John Maguire
Martin Kanowski
Barbara Käsmann-Kellner
Ilse Wieland
Eyal Banin
Netta Levin
Michael B. Hoffmann
Antony B. Morland
author_facet Barbara Molz
Anne Herbik
Heidi A. Baseler
Pieter B. de Best
Richard W. Vernon
Noa Raz
Andre D. Gouws
Khazar Ahmadi
Rebecca Lowndes
Rebecca J. McLean
Irene Gottlob
Susanne Kohl
Lars Choritz
John Maguire
Martin Kanowski
Barbara Käsmann-Kellner
Ilse Wieland
Eyal Banin
Netta Levin
Michael B. Hoffmann
Antony B. Morland
author_sort Barbara Molz
collection DOAJ
description Autosomal recessive Achromatopsia (ACHM) is a rare inherited disorder associated with dysfunctional cone photoreceptors resulting in a congenital absence of cone input to visual cortex. This might lead to distinct changes in cortical architecture with a negative impact on the success of gene augmentation therapies. To investigate the status of the visual cortex in these patients, we performed a multi-centre study focusing on the cortical structure of regions that normally receive predominantly cone input. Using high-resolution T1-weighted MRI scans and surface-based morphometry, we compared cortical thickness, surface area and grey matter volume in foveal, parafoveal and paracentral representations of primary visual cortex in 15 individuals with ACHM and 42 normally sighted, healthy controls (HC). In ACHM, surface area was reduced in all tested representations, while thickening of the cortex was found highly localized to the most central representation. These results were comparable to more widespread changes in brain structure reported in congenitally blind individuals, suggesting similar developmental processes, i.e., irrespective of the underlying cause and extent of vision loss. The cortical differences we report here could limit the success of treatment of ACHM in adulthood. Interventions earlier in life when cortical structure is not different from normal would likely offer better visual outcomes for those with ACHM.
first_indexed 2024-12-13T01:28:14Z
format Article
id doaj.art-5b376ad1773c4fc9a913d40790812f34
institution Directory Open Access Journal
issn 2213-1582
language English
last_indexed 2024-12-13T01:28:14Z
publishDate 2022-01-01
publisher Elsevier
record_format Article
series NeuroImage: Clinical
spelling doaj.art-5b376ad1773c4fc9a913d40790812f342022-12-22T00:04:04ZengElsevierNeuroImage: Clinical2213-15822022-01-0133102925Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsiaBarbara Molz0Anne Herbik1Heidi A. Baseler2Pieter B. de Best3Richard W. Vernon4Noa Raz5Andre D. Gouws6Khazar Ahmadi7Rebecca Lowndes8Rebecca J. McLean9Irene Gottlob10Susanne Kohl11Lars Choritz12John Maguire13Martin Kanowski14Barbara Käsmann-Kellner15Ilse Wieland16Eyal Banin17Netta Levin18Michael B. Hoffmann19Antony B. Morland20Department of Psychology, University of York, Heslington, YO10 5DD York, United Kingdom; Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, NetherlandsDepartment of Ophthalmology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, GermanyDepartment of Psychology, University of York, Heslington, YO10 5DD York, United Kingdom; Hull York Medical School, University of York, Heslington, YO10 5DD York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, YO10 5DD York, United KingdomMRI Unit, Department of Neurology, Hadassah Medical Center, 91120 Jerusalem, IsraelDepartment of Psychology, University of York, Heslington, YO10 5DD York, United KingdomMRI Unit, Department of Neurology, Hadassah Medical Center, 91120 Jerusalem, IsraelYork Neuroimaging Centre, Department of Psychology, University of York, YO10 5NY York, United KingdomDepartment of Ophthalmology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, GermanyYork Neuroimaging Centre, Department of Psychology, University of York, YO10 5NY York, United KingdomUniversity of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, LE2 7LX Leicester, United KingdomUniversity of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, LE2 7LX Leicester, United KingdomMolecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, 72076 Tübingen, GermanyDepartment of Ophthalmology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, GermanySchool of Optometry and Vision Sciences, University of Bradford, BD7 1DP Bradford, United KingdomDepartment of Neurology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, GermanyDepartment of Ophthalmology, Saarland University Hospital and Medical Faculty of the Saarland University, 66421 Homburg, GermanyDepartment for Molecular Genetics, Institute for Human Genetics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, GermanyDegenerative Diseases of the Retina Unit, Department of Ophthalmology, Hadassah Medical Center, 91120 Jerusalem, IsraelMRI Unit, Department of Neurology, Hadassah Medical Center, 91120 Jerusalem, IsraelDepartment of Ophthalmology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106 Magdeburg, GermanyDepartment of Psychology, University of York, Heslington, YO10 5DD York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, YO10 5DD York, United Kingdom; York Neuroimaging Centre, Department of Psychology, University of York, YO10 5NY York, United Kingdom; Corresponding author at: Department of Psychology, University of York, Heslington, YO10 5DD York, United Kingdom.Autosomal recessive Achromatopsia (ACHM) is a rare inherited disorder associated with dysfunctional cone photoreceptors resulting in a congenital absence of cone input to visual cortex. This might lead to distinct changes in cortical architecture with a negative impact on the success of gene augmentation therapies. To investigate the status of the visual cortex in these patients, we performed a multi-centre study focusing on the cortical structure of regions that normally receive predominantly cone input. Using high-resolution T1-weighted MRI scans and surface-based morphometry, we compared cortical thickness, surface area and grey matter volume in foveal, parafoveal and paracentral representations of primary visual cortex in 15 individuals with ACHM and 42 normally sighted, healthy controls (HC). In ACHM, surface area was reduced in all tested representations, while thickening of the cortex was found highly localized to the most central representation. These results were comparable to more widespread changes in brain structure reported in congenitally blind individuals, suggesting similar developmental processes, i.e., irrespective of the underlying cause and extent of vision loss. The cortical differences we report here could limit the success of treatment of ACHM in adulthood. Interventions earlier in life when cortical structure is not different from normal would likely offer better visual outcomes for those with ACHM.http://www.sciencedirect.com/science/article/pii/S2213158221003697AchromatopsiasMRISurface-based morphologyPlasticityPrimary visual cortex
spellingShingle Barbara Molz
Anne Herbik
Heidi A. Baseler
Pieter B. de Best
Richard W. Vernon
Noa Raz
Andre D. Gouws
Khazar Ahmadi
Rebecca Lowndes
Rebecca J. McLean
Irene Gottlob
Susanne Kohl
Lars Choritz
John Maguire
Martin Kanowski
Barbara Käsmann-Kellner
Ilse Wieland
Eyal Banin
Netta Levin
Michael B. Hoffmann
Antony B. Morland
Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia
NeuroImage: Clinical
Achromatopsia
sMRI
Surface-based morphology
Plasticity
Primary visual cortex
title Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia
title_full Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia
title_fullStr Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia
title_full_unstemmed Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia
title_short Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia
title_sort structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia
topic Achromatopsia
sMRI
Surface-based morphology
Plasticity
Primary visual cortex
url http://www.sciencedirect.com/science/article/pii/S2213158221003697
work_keys_str_mv AT barbaramolz structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT anneherbik structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT heidiabaseler structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT pieterbdebest structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT richardwvernon structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT noaraz structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT andredgouws structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT khazarahmadi structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT rebeccalowndes structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT rebeccajmclean structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT irenegottlob structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT susannekohl structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT larschoritz structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT johnmaguire structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT martinkanowski structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT barbarakasmannkellner structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT ilsewieland structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT eyalbanin structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT nettalevin structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT michaelbhoffmann structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia
AT antonybmorland structuralchangestoprimaryvisualcortexinthecongenitalabsenceofconeinputinachromatopsia