Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration

This work aims to determine the optimized ultrafiltration conditions for industrial wastewater treatment loaded with oil and heavy metals generated from an electroplating industry for water reuse in the industrial process. A ceramic multitubular membrane was used for the almost total retention of oi...

Full description

Bibliographic Details
Main Authors: Hajer Aloulou, Afef Attia, Wala Aloulou, Sudip Chakraborty, Lassaad Baklouti, Lasaad Dammak, Raja Ben Amar
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/12/7/676
_version_ 1797417075479674880
author Hajer Aloulou
Afef Attia
Wala Aloulou
Sudip Chakraborty
Lassaad Baklouti
Lasaad Dammak
Raja Ben Amar
author_facet Hajer Aloulou
Afef Attia
Wala Aloulou
Sudip Chakraborty
Lassaad Baklouti
Lasaad Dammak
Raja Ben Amar
author_sort Hajer Aloulou
collection DOAJ
description This work aims to determine the optimized ultrafiltration conditions for industrial wastewater treatment loaded with oil and heavy metals generated from an electroplating industry for water reuse in the industrial process. A ceramic multitubular membrane was used for the almost total retention of oil and turbidity, and the high removal of heavy metals such as Pb, Zn, and Cu (>95%) was also applied. The interactive effects of the initial oil concentration (19–117 g/L), feed temperature (20–60 °C), and applied transmembrane pressure (2–5 bar) on the chemical oxygen demand removal (RCOD) and permeate flux (Jw) were investigated. A Box–Behnken experimental design (BBD) for response surface methodology (RSM) was used for the statistical analysis, modelling, and optimization of operating conditions. The analysis of variance (ANOVA) results showed that the COD removal and permeate flux were significant since they showed good correlation coefficients of 0.985 and 0.901, respectively. Mathematical modelling revealed that the best conditions were an initial oil concentration of 117 g/L and a feed temperature of 60 °C, under a transmembrane pressure of 3.5 bar. In addition, the effect of the concentration under the optimized conditions was studied. It was found that the maximum volume concentrating factor (<i>VCF</i>) value was equal to five and that the pollutant retention was independent of the <i>VCF</i>. The fouling mechanism was estimated by applying Hermia’s model. The results indicated that the membrane fouling given by the decline in the permeate flux over time could be described by the cake filtration model. Finally, the efficiency of the membrane regeneration was proved by determining the water permeability after the chemical cleaning process.
first_indexed 2024-03-09T06:13:40Z
format Article
id doaj.art-5b3c7ca83edd48ffafcff86efe5887aa
institution Directory Open Access Journal
issn 2077-0375
language English
last_indexed 2024-03-09T06:13:40Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Membranes
spelling doaj.art-5b3c7ca83edd48ffafcff86efe5887aa2023-12-03T11:55:21ZengMDPI AGMembranes2077-03752022-06-0112767610.3390/membranes12070676Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow UltrafiltrationHajer Aloulou0Afef Attia1Wala Aloulou2Sudip Chakraborty3Lassaad Baklouti4Lasaad Dammak5Raja Ben Amar6Research Unit “Advanced Technologies for Environment and Smart Cities”, Faculty of Science of Sfax, University of Sfax, Sfax 3038, TunisiaResearch Unit “Advanced Technologies for Environment and Smart Cities”, Faculty of Science of Sfax, University of Sfax, Sfax 3038, TunisiaResearch Unit “Advanced Technologies for Environment and Smart Cities”, Faculty of Science of Sfax, University of Sfax, Sfax 3038, TunisiaDepartment of DIMES, University of Calabria, Via P. Bucci, Cubo 42/a, 87036 Rende, ItalyDepartment of Chemistry, College of Sciences and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi ArabiaUniversité Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais, FranceResearch Unit “Advanced Technologies for Environment and Smart Cities”, Faculty of Science of Sfax, University of Sfax, Sfax 3038, TunisiaThis work aims to determine the optimized ultrafiltration conditions for industrial wastewater treatment loaded with oil and heavy metals generated from an electroplating industry for water reuse in the industrial process. A ceramic multitubular membrane was used for the almost total retention of oil and turbidity, and the high removal of heavy metals such as Pb, Zn, and Cu (>95%) was also applied. The interactive effects of the initial oil concentration (19–117 g/L), feed temperature (20–60 °C), and applied transmembrane pressure (2–5 bar) on the chemical oxygen demand removal (RCOD) and permeate flux (Jw) were investigated. A Box–Behnken experimental design (BBD) for response surface methodology (RSM) was used for the statistical analysis, modelling, and optimization of operating conditions. The analysis of variance (ANOVA) results showed that the COD removal and permeate flux were significant since they showed good correlation coefficients of 0.985 and 0.901, respectively. Mathematical modelling revealed that the best conditions were an initial oil concentration of 117 g/L and a feed temperature of 60 °C, under a transmembrane pressure of 3.5 bar. In addition, the effect of the concentration under the optimized conditions was studied. It was found that the maximum volume concentrating factor (<i>VCF</i>) value was equal to five and that the pollutant retention was independent of the <i>VCF</i>. The fouling mechanism was estimated by applying Hermia’s model. The results indicated that the membrane fouling given by the decline in the permeate flux over time could be described by the cake filtration model. Finally, the efficiency of the membrane regeneration was proved by determining the water permeability after the chemical cleaning process.https://www.mdpi.com/2077-0375/12/7/676ultrafiltrationoily wastewaterheavy metalsresponse surface methodologyfouling mechanism
spellingShingle Hajer Aloulou
Afef Attia
Wala Aloulou
Sudip Chakraborty
Lassaad Baklouti
Lasaad Dammak
Raja Ben Amar
Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration
Membranes
ultrafiltration
oily wastewater
heavy metals
response surface methodology
fouling mechanism
title Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration
title_full Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration
title_fullStr Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration
title_full_unstemmed Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration
title_short Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration
title_sort statistical simulation a tool for the process optimization of oily wastewater by crossflow ultrafiltration
topic ultrafiltration
oily wastewater
heavy metals
response surface methodology
fouling mechanism
url https://www.mdpi.com/2077-0375/12/7/676
work_keys_str_mv AT hajeraloulou statisticalsimulationatoolfortheprocessoptimizationofoilywastewaterbycrossflowultrafiltration
AT afefattia statisticalsimulationatoolfortheprocessoptimizationofoilywastewaterbycrossflowultrafiltration
AT walaaloulou statisticalsimulationatoolfortheprocessoptimizationofoilywastewaterbycrossflowultrafiltration
AT sudipchakraborty statisticalsimulationatoolfortheprocessoptimizationofoilywastewaterbycrossflowultrafiltration
AT lassaadbaklouti statisticalsimulationatoolfortheprocessoptimizationofoilywastewaterbycrossflowultrafiltration
AT lasaaddammak statisticalsimulationatoolfortheprocessoptimizationofoilywastewaterbycrossflowultrafiltration
AT rajabenamar statisticalsimulationatoolfortheprocessoptimizationofoilywastewaterbycrossflowultrafiltration