Exosomal microRNA Differential Expression in Plasma of Young Adults with Chronic Mild Traumatic Brain Injury and Healthy Control

Chronic mild traumatic brain injury (mTBI) has long-term consequences, such as neurological disability, but its pathophysiological mechanism is unknown. Exosomal microRNAs (exomiRNAs) may be important mediators of molecular and cellular changes involved in persistent symptoms after mTBI. We profiled...

Full description

Bibliographic Details
Main Authors: Rany Vorn, Maiko Suarez, Jacob C. White, Carina A. Martin, Hyung-Suk Kim, Chen Lai, Si-Jung Yun, Jessica M. Gill, Hyunhwa Lee
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/10/1/36
Description
Summary:Chronic mild traumatic brain injury (mTBI) has long-term consequences, such as neurological disability, but its pathophysiological mechanism is unknown. Exosomal microRNAs (exomiRNAs) may be important mediators of molecular and cellular changes involved in persistent symptoms after mTBI. We profiled exosomal microRNAs (exomiRNAs) in plasma from young adults with or without a chronic mTBI to decipher the underlying mechanisms of its long-lasting symptoms after mTBI. We identified 25 significantly dysregulated exomiRNAs in the chronic mTBI group (<i>n</i> = 29, with 4.48 mean years since the last injury) compared to controls (<i>n</i> = 11). These miRNAs are associated with pathways of neurological disease, organismal injury and abnormalities, and psychological disease. Dysregulation of these plasma exomiRNAs in chronic mTBI may indicate that neuronal inflammation can last long after the injury and result in enduring and persistent post-injury symptoms. These findings are useful for diagnosing and treating chronic mTBIs.
ISSN:2227-9059