Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature

It is known that for each simplicial polyhedron P in 3-space there exists a monic polynomial Q depending on the combinatorial structure of P and the lengths of its edges only such that the volume of the polyhedron P as well as one of any polyhedron isometric to P and with the same combinatorial stru...

Full description

Bibliographic Details
Main Authors: D. I. Sabitov, I. Kh. Sabitov
Format: Article
Language:English
Published: Yaroslavl State University 2015-03-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/151
_version_ 1797877874279055360
author D. I. Sabitov
I. Kh. Sabitov
author_facet D. I. Sabitov
I. Kh. Sabitov
author_sort D. I. Sabitov
collection DOAJ
description It is known that for each simplicial polyhedron P in 3-space there exists a monic polynomial Q depending on the combinatorial structure of P and the lengths of its edges only such that the volume of the polyhedron P as well as one of any polyhedron isometric to P and with the same combinatorial structure are roots of the polynomial Q. But this polynomial contains many millions of terms and it cannot be presented in an explicit form. In this work we indicate some special classes of polyhedra for which these polynomials can be found by a sufficiently effective algorithm which also works in spaces of constsnt curvature of any dimension.
first_indexed 2024-04-10T02:24:49Z
format Article
id doaj.art-5b51c7e0e069469f97c9b2f64e2799e0
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-10T02:24:49Z
publishDate 2015-03-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-5b51c7e0e069469f97c9b2f64e2799e02023-03-13T08:07:33ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172015-03-0119616116910.18255/1818-1015-2012-6-161-169145Volume Polynomials for Some Polyhedra in Spaces of Constant CurvatureD. I. Sabitov0I. Kh. Sabitov1Московский государственный университет им. М.В. ЛомоносоваМосковский государственный университет им. М.В. Ломоносова; Ярославский государственный университет им. П.Г. Демидова, Международная лаборатория "Дискретная и вычислительная геометрия" им. Б.Н. ДелонеIt is known that for each simplicial polyhedron P in 3-space there exists a monic polynomial Q depending on the combinatorial structure of P and the lengths of its edges only such that the volume of the polyhedron P as well as one of any polyhedron isometric to P and with the same combinatorial structure are roots of the polynomial Q. But this polynomial contains many millions of terms and it cannot be presented in an explicit form. In this work we indicate some special classes of polyhedra for which these polynomials can be found by a sufficiently effective algorithm which also works in spaces of constsnt curvature of any dimension.https://www.mais-journal.ru/jour/article/view/151многогранникиметрикипирамидыобъемымногочлены
spellingShingle D. I. Sabitov
I. Kh. Sabitov
Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature
Моделирование и анализ информационных систем
многогранники
метрики
пирамиды
объемы
многочлены
title Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature
title_full Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature
title_fullStr Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature
title_full_unstemmed Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature
title_short Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature
title_sort volume polynomials for some polyhedra in spaces of constant curvature
topic многогранники
метрики
пирамиды
объемы
многочлены
url https://www.mais-journal.ru/jour/article/view/151
work_keys_str_mv AT disabitov volumepolynomialsforsomepolyhedrainspacesofconstantcurvature
AT ikhsabitov volumepolynomialsforsomepolyhedrainspacesofconstantcurvature