Oxidation mechanism and kinetics of SiBCN/HfC ceramic composites at high temperatures

SiBCN/HfC ceramic composites were obtained via mechanical alloying and hot-press sintering. We evaluated the high-temperature oxidation resistance of the SiBCN/HfC ceramic composites after heat treatments at 1500 and 1750 °C in static air. The SiBCN/HfC composites have an oxidation rate constant K5-...

Full description

Bibliographic Details
Main Authors: Yuquan Wei, Yong Yang, Meng Liu, Qile Li, Zhengren Huang
Format: Article
Language:English
Published: Elsevier 2020-03-01
Series:Journal of Materials Research and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785419314206
Description
Summary:SiBCN/HfC ceramic composites were obtained via mechanical alloying and hot-press sintering. We evaluated the high-temperature oxidation resistance of the SiBCN/HfC ceramic composites after heat treatments at 1500 and 1750 °C in static air. The SiBCN/HfC composites have an oxidation rate constant K5-20 of 1.1 μm2/h at 1500 °C, which is less than that for other SiBCN-based ceramics (5.4 μm2/h). After oxidation at 1750 °C, HfO2 and HfSiO4 spherical nanocrystals resulting from the oxidation of HfC were dispersed in silica layers that acted as a dense continuous protective coating on the surface of the SiBCN/HfC samples and provided a higher resistance to high-temperature exposure. Keywords: SiBCN, HfC, Oxidation mechanism
ISSN:2238-7854