Experimental Study and Finite Element Calculation of the Behavior of Special T-Shaped Composite Columns with Concrete-Filled Square Steel Tubulars under Eccentric Loads

Special T-shaped composite columns with concrete-filled square steel tubulars have good restraint on internal concrete, are convenient to process, have a high bearing capacity and good mechanical properties, and can increase the aesthetics of the building and the utilization rate of indoor space. Th...

Full description

Bibliographic Details
Main Authors: Quan Li, Zhe Liu, Xuejun Zhou, Zhen Wang
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/12/10/1756
Description
Summary:Special T-shaped composite columns with concrete-filled square steel tubulars have good restraint on internal concrete, are convenient to process, have a high bearing capacity and good mechanical properties, and can increase the aesthetics of the building and the utilization rate of indoor space. Theoretical analysis, experimental study, and numerical simulation of the eccentric compression performance of the special-shaped column are carried out. Taking the specimen length, eccentric distance, and eccentric direction as test parameters, nine specimens with different slenderness ratios were designed to carry out eccentric compression tests. The eccentric compression performance was numerically simulated and analyzed by the general finite element software ABAQUS. The results show that the short column mainly suffers section strength failure, while the middle and long columns mainly suffer bending instability failure without torsional deformation. The degree of influence of the test parameters decreases in turn according to the eccentric distance, eccentric direction, and length of the specimen; there is no weld cracking phenomenon, and the square steel pipes can work together. The finite element calculation results are in good agreement with the experimental and theoretical values.
ISSN:2075-5309