Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition time
Abstract Volumes of usual PET phantoms are about four to sixfold that of a human liver. In order to avoid count rate saturation and handling of very high 90Y activity, reported TOF-PET phantom studies are performed using specific activities lower than those observed in liver radioembolization. Howev...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-11-01
|
Series: | EJNMMI Physics |
Online Access: | https://doi.org/10.1186/s40658-019-0259-6 |
_version_ | 1818327794941165568 |
---|---|
author | Michel Hesse Stephan Walrand |
author_facet | Michel Hesse Stephan Walrand |
author_sort | Michel Hesse |
collection | DOAJ |
description | Abstract Volumes of usual PET phantoms are about four to sixfold that of a human liver. In order to avoid count rate saturation and handling of very high 90Y activity, reported TOF-PET phantom studies are performed using specific activities lower than those observed in liver radioembolization. However, due to the constant random coincidence rate induced by the natural crystal radioactivity, reduction of 90Y specific activity in TOF-PET imaging cannot be counterbalanced by increasing the acquisition time. As a result, most 90Y phantom studies reported images noisier than those obtained in whole-body 18F-FDG, and thus advised to use dedicated noise control in TOF-PET imaging post 90Y liver radioembolization. We performed acquisitions of the Jaszczak Deluxe phantom in which the hot rod insert was only partially filled with 2.6 GBq of 90Y. Standard reconstruction parameters recommended by the manufacturer for whole-body 18F-FDG PET were used. Low specific activity setups, although exactly compensated by increasing the acquisition time in order to get the same number of detected true coincidences per millilitre, were impacted by significant noise. On the other hand, specific activity and acquisition time setup similar to that used in post 90Y liver radioembolization provided image quality very close to that of whole-body 18F-FDG. This result clearly discards the use of low specific activity phantoms intended to TOF-PET reconstruction parameter optimization. Volume reduction of large phantoms can be achieved by vertically setting the phantoms or by adding Styrofoam inserts. |
first_indexed | 2024-12-13T12:21:56Z |
format | Article |
id | doaj.art-5b62602ff0604706aba11bbeff35c50c |
institution | Directory Open Access Journal |
issn | 2197-7364 |
language | English |
last_indexed | 2024-12-13T12:21:56Z |
publishDate | 2019-11-01 |
publisher | SpringerOpen |
record_format | Article |
series | EJNMMI Physics |
spelling | doaj.art-5b62602ff0604706aba11bbeff35c50c2022-12-21T23:46:33ZengSpringerOpenEJNMMI Physics2197-73642019-11-01611410.1186/s40658-019-0259-6Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition timeMichel Hesse0Stephan Walrand1Universite Catholique de LouvainUniversite Catholique de LouvainAbstract Volumes of usual PET phantoms are about four to sixfold that of a human liver. In order to avoid count rate saturation and handling of very high 90Y activity, reported TOF-PET phantom studies are performed using specific activities lower than those observed in liver radioembolization. However, due to the constant random coincidence rate induced by the natural crystal radioactivity, reduction of 90Y specific activity in TOF-PET imaging cannot be counterbalanced by increasing the acquisition time. As a result, most 90Y phantom studies reported images noisier than those obtained in whole-body 18F-FDG, and thus advised to use dedicated noise control in TOF-PET imaging post 90Y liver radioembolization. We performed acquisitions of the Jaszczak Deluxe phantom in which the hot rod insert was only partially filled with 2.6 GBq of 90Y. Standard reconstruction parameters recommended by the manufacturer for whole-body 18F-FDG PET were used. Low specific activity setups, although exactly compensated by increasing the acquisition time in order to get the same number of detected true coincidences per millilitre, were impacted by significant noise. On the other hand, specific activity and acquisition time setup similar to that used in post 90Y liver radioembolization provided image quality very close to that of whole-body 18F-FDG. This result clearly discards the use of low specific activity phantoms intended to TOF-PET reconstruction parameter optimization. Volume reduction of large phantoms can be achieved by vertically setting the phantoms or by adding Styrofoam inserts.https://doi.org/10.1186/s40658-019-0259-6 |
spellingShingle | Michel Hesse Stephan Walrand Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition time EJNMMI Physics |
title | Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition time |
title_full | Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition time |
title_fullStr | Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition time |
title_full_unstemmed | Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition time |
title_short | Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition time |
title_sort | significant artefactual noise in 90y tof pet imaging of low specific activity phantoms arises despite increased acquisition time |
url | https://doi.org/10.1186/s40658-019-0259-6 |
work_keys_str_mv | AT michelhesse significantartefactualnoisein90ytofpetimagingoflowspecificactivityphantomsarisesdespiteincreasedacquisitiontime AT stephanwalrand significantartefactualnoisein90ytofpetimagingoflowspecificactivityphantomsarisesdespiteincreasedacquisitiontime |