Antibacterial and Immunomodulatory Properties of Acellular Wharton’s Jelly Matrix

Of all biologic matrices, decellularized tissues have emerged as a promising tool in the field of regenerative medicine. Few empirical clinical studies have shown that Wharton’s jelly (WJ) of the human umbilical cord promotes wound closure and reduces wound-related infections. In this scope, we here...

Full description

Bibliographic Details
Main Authors: Marie Dubus, Loïc Scomazzon, Julie Chevrier, Charlotte Ledouble, Adrien Baldit, Julien Braux, Florelle Gindraux, Camille Boulagnon, Sandra Audonnet, Marius Colin, Hassan Rammal, Cédric Mauprivez, Halima Kerdjoudj
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/10/2/227
Description
Summary:Of all biologic matrices, decellularized tissues have emerged as a promising tool in the field of regenerative medicine. Few empirical clinical studies have shown that Wharton’s jelly (WJ) of the human umbilical cord promotes wound closure and reduces wound-related infections. In this scope, we herein investigated whether decellularized (DC)-WJ could be used as an engineered biomaterial. In comparison with devitalized (DV)-WJ, our results showed an inherent effect of DC-WJ on Gram positive (<i>S. aureus</i> and <i>S. epidermidis</i>) and Gram negative (<i>E. coli</i> and <i>P. aeruginosa</i>) growth and adhesion. Although DC-WJ activated the neutrophils and monocytes in a comparable magnitude to DV-WJ, macrophages modulated their phenotypes and polarization states from the resting M0 phenotype to the hybrid M1/M2 phenotype in the presence of DC-WJ. M1 phenotype was predominant in the presence of DV-WJ. Finally, the subcutaneous implantation of DC-WJ showed total resorption after three weeks of implantation without any sign of foreign body reaction. These significant data shed light on the potential regenerative application of DC-WJ in providing a suitable biomaterial for tissue regenerative medicine and an ideal strategy to prevent wound-associated infections.
ISSN:2227-9059