Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space

In this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation \begin{equation*}\left\{ \begin{array}{l} - \left({\frac{{u'}}{{\sqrt {1 - u{'^2}} }}} \right)' = \lambda f\left(u \right), \\ u\left(x \right) >...

Full description

Bibliographic Details
Main Authors: Zhiqian He, Liangying Miao
Format: Article
Language:English
Published: AIMS Press 2020-05-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020249/fulltext.html
Description
Summary:In this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation \begin{equation*}\left\{ \begin{array}{l} - \left({\frac{{u'}}{{\sqrt {1 - u{'^2}} }}} \right)' = \lambda f\left(u \right), \\ u\left(x \right) > 0, - 1 < x < 1, \\ u\left({ - 1} \right) = u\left(1 \right) = 0, \end{array} \right.\end{equation*} where $\lambda$ is a positive parameter. The main tool is the fixed point index in cones.
ISSN:2473-6988