Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space

In this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation \begin{equation*}\left\{ \begin{array}{l} - \left({\frac{{u'}}{{\sqrt {1 - u{'^2}} }}} \right)' = \lambda f\left(u \right), \\ u\left(x \right) >...

Full description

Bibliographic Details
Main Authors: Zhiqian He, Liangying Miao
Format: Article
Language:English
Published: AIMS Press 2020-05-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020249/fulltext.html
_version_ 1818097116992503808
author Zhiqian He
Liangying Miao
author_facet Zhiqian He
Liangying Miao
author_sort Zhiqian He
collection DOAJ
description In this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation \begin{equation*}\left\{ \begin{array}{l} - \left({\frac{{u'}}{{\sqrt {1 - u{'^2}} }}} \right)' = \lambda f\left(u \right), \\ u\left(x \right) > 0, - 1 < x < 1, \\ u\left({ - 1} \right) = u\left(1 \right) = 0, \end{array} \right.\end{equation*} where $\lambda$ is a positive parameter. The main tool is the fixed point index in cones.
first_indexed 2024-12-10T23:15:25Z
format Article
id doaj.art-5b72648cdc4240dfa56602e8019d3d4d
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-10T23:15:25Z
publishDate 2020-05-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-5b72648cdc4240dfa56602e8019d3d4d2022-12-22T01:29:51ZengAIMS PressAIMS Mathematics2473-69882020-05-015438403850Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski spaceZhiqian He0Liangying Miao11 Department of Basic Teaching and Research, Qinghai University, Xining 810016, P. R. China2 School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, P. R. ChinaIn this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation \begin{equation*}\left\{ \begin{array}{l} - \left({\frac{{u'}}{{\sqrt {1 - u{'^2}} }}} \right)' = \lambda f\left(u \right), \\ u\left(x \right) > 0, - 1 < x < 1, \\ u\left({ - 1} \right) = u\left(1 \right) = 0, \end{array} \right.\end{equation*} where $\lambda$ is a positive parameter. The main tool is the fixed point index in cones.https://www.aimspress.com/article/10.3934/math.2020249/fulltext.htmlmean curvature equationpositive solutionsmultiplicityuniquenesscone
spellingShingle Zhiqian He
Liangying Miao
Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space
AIMS Mathematics
mean curvature equation
positive solutions
multiplicity
uniqueness
cone
title Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space
title_full Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space
title_fullStr Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space
title_full_unstemmed Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space
title_short Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space
title_sort uniqueness and multiplicity of positive solutions for one dimensional prescribed mean curvature equation in minkowski space
topic mean curvature equation
positive solutions
multiplicity
uniqueness
cone
url https://www.aimspress.com/article/10.3934/math.2020249/fulltext.html
work_keys_str_mv AT zhiqianhe uniquenessandmultiplicityofpositivesolutionsforonedimensionalprescribedmeancurvatureequationinminkowskispace
AT liangyingmiao uniquenessandmultiplicityofpositivesolutionsforonedimensionalprescribedmeancurvatureequationinminkowskispace