In-Depth Kinetic Modeling and Chemical Analysis for the Epoxidation of Vegetable Oils in a Liquid–Liquid–Solid System

A heterogeneous catalyst for producing epoxidized vegetable oils, an important intermediate in the production of non-isocyanate polyurethanes, is essential for product separation and for decreasing the side-reaction, i.e., ring-opening reaction, via the Prileschajew method. The development of reliab...

Full description

Bibliographic Details
Main Authors: Yudong Meng, Nasreddine Kebir, Xiaoshuang Cai, Sebastien Leveneur
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/13/2/274
Description
Summary:A heterogeneous catalyst for producing epoxidized vegetable oils, an important intermediate in the production of non-isocyanate polyurethanes, is essential for product separation and for decreasing the side-reaction, i.e., ring-opening reaction, via the Prileschajew method. The development of reliable kinetic models considering key variables for both phases and the mass transfer phenomena is missing in the literature. The reaction pathway for the ring-opening reaction is also under debate. Therefore, we studied the kinetics of epoxidation of cottonseed oil by perpropionic acid over the solid acid catalyst amberlite IR-120. An in-depth kinetic model was developed by using Bayesian inference. The reaction pathway for the ring opening was investigated. Propionic acid, a weak acid, allows for a decrease in the oxirane ring-opening side reaction.
ISSN:2073-4344