Prototype to Increase Crosswalk Safety by Integrating Computer Vision with ITS-G5 Technologies

Human errors are probably the main cause of car accidents, and this type of vehicle is one of the most dangerous forms of transport for people. The danger comes from the fact that on public roads there are simultaneously different types of actors (drivers, pedestrians or cyclists) and many objects t...

Full description

Bibliographic Details
Main Authors: Francisco Gaspar, Vitor Guerreiro, Paulo Loureiro, Paulo Costa, Sílvio Mendes, Carlos Rabadão
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/11/11/503
Description
Summary:Human errors are probably the main cause of car accidents, and this type of vehicle is one of the most dangerous forms of transport for people. The danger comes from the fact that on public roads there are simultaneously different types of actors (drivers, pedestrians or cyclists) and many objects that change their position over time, making difficult to predict their immediate movements. The intelligent transport system (ITS-G5) standard specifies the European communication technologies and protocols to assist public road users, providing them with relevant information. The scientific community is developing ITS-G5 applications for various purposes, among which is the increasing of pedestrian safety. This paper describes the developed work to implement an ITS-G5 prototype that aims at the increasing of pedestrian and driver safety in the vicinity of a pedestrian crosswalk by sending ITS-G5 decentralized environmental notification messages (DENM) to the vehicles. These messages are analyzed, and if they are relevant, they are presented to the driver through a car’s onboard infotainment system. This alert allows the driver to take safety precautions to prevent accidents. The implemented prototype was tested in a controlled environment pedestrian crosswalk. The results showed the capacity of the prototype for detecting pedestrians, suitable message sending, the reception and processing on a vehicle onboard unit (OBU) module and its presentation on the car onboard infotainment system.
ISSN:2078-2489