Artificial Neural Networks and Data Mining Techniques for Summer Crop Discrimination: A New Approach
The objective of this research was to distinguish and estimate cultivated areas of soybean and corn in Paraná State, Brazil, in the 2014/2015 crop season. The main obstacle in mapping summer crops using vegetation index images is to separate the cultivated areas with soybean and corn. These crops pl...
Main Authors: | Clóvis Cechim Júnior, Rosangela Carline Shemmer, Jerry Adriani Johann, Gabriel Henrique de Almeida Pereira, Flávio Deppe, Miguel Angel Uribe Opazo, Carlos Antonio da Silva Junior |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2019-01-01
|
Series: | Canadian Journal of Remote Sensing |
Online Access: | http://dx.doi.org/10.1080/07038992.2019.1594734 |
Similar Items
-
CROP MODELING WITH LESS DATA: THE FAO MODEL FOR SOYBEAN YIELD ESTIMATION
by: Jonathan Richetti, et al.
Published: (2021-04-01) -
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES
by: Willyan R. Becker, et al.
Published: (2017-08-01) -
Analysis of static and dynamic capacity in Paraná State, Brazil
by: Elizabeth Giron Cima, et al.
Published: (2020-05-01) -
Modelo de regressão espacial para estimativa da produtividade da soja associada a variáveis agrometeorológicas na região oeste do estado do Paraná
by: Everton C. de Araújo, et al.
Published: (2014-04-01) -
Variabilidade espacial da condutividade hidráulica e da infiltração da água no solo = Spatial variability of hydraulic conductivity and water infiltration in the soil
by: Clementina Scherpinski, et al.
Published: (2010-01-01)