Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants
Previous studies have reported that low temperature (LT) constrains plant growth and restricts productivity in temperate regions. However, the underlying mechanisms are complex and not well understood. Over the past ten years, research on the process of adaptation and tolerance of plants during cold...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Plants |
Subjects: | |
Online Access: | https://www.mdpi.com/2223-7747/9/5/560 |
_version_ | 1797569412396482560 |
---|---|
author | Faujiah Nurhasanah Ritonga Su Chen |
author_facet | Faujiah Nurhasanah Ritonga Su Chen |
author_sort | Faujiah Nurhasanah Ritonga |
collection | DOAJ |
description | Previous studies have reported that low temperature (LT) constrains plant growth and restricts productivity in temperate regions. However, the underlying mechanisms are complex and not well understood. Over the past ten years, research on the process of adaptation and tolerance of plants during cold stress has been carried out. In molecular terms, researchers prioritize research into the field of the ICE-CBF-COR signaling pathway which is believed to be the important key to the cold acclimation process. Inducer of CBF Expression (<i>ICE</i>) is a pioneer of cold acclimation and plays a central role in C-repeat binding (CBF) cold induction. <i>CBFs</i> activate the expression of <i>COR</i> genes via binding to cis-elements in the promoter of <i>COR</i> genes. An ICE-CBF-COR signaling pathway activates the appropriate expression of downstream genes, which encodes osmoregulation substances. In this review, we summarize the recent progress of cold stress tolerance in plants from molecular and physiological perspectives and other factors, such as hormones, light, and circadian clock. Understanding the process of cold stress tolerance and the genes involved in the signaling network for cold stress is essential for improving plants, especially crops. |
first_indexed | 2024-03-10T20:11:21Z |
format | Article |
id | doaj.art-5bc034ffd5594060b91f5ba9c7e3cdf1 |
institution | Directory Open Access Journal |
issn | 2223-7747 |
language | English |
last_indexed | 2024-03-10T20:11:21Z |
publishDate | 2020-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Plants |
spelling | doaj.art-5bc034ffd5594060b91f5ba9c7e3cdf12023-11-19T22:54:17ZengMDPI AGPlants2223-77472020-04-019556010.3390/plants9050560Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in PlantsFaujiah Nurhasanah Ritonga0Su Chen1State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, ChinaState Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, ChinaPrevious studies have reported that low temperature (LT) constrains plant growth and restricts productivity in temperate regions. However, the underlying mechanisms are complex and not well understood. Over the past ten years, research on the process of adaptation and tolerance of plants during cold stress has been carried out. In molecular terms, researchers prioritize research into the field of the ICE-CBF-COR signaling pathway which is believed to be the important key to the cold acclimation process. Inducer of CBF Expression (<i>ICE</i>) is a pioneer of cold acclimation and plays a central role in C-repeat binding (CBF) cold induction. <i>CBFs</i> activate the expression of <i>COR</i> genes via binding to cis-elements in the promoter of <i>COR</i> genes. An ICE-CBF-COR signaling pathway activates the appropriate expression of downstream genes, which encodes osmoregulation substances. In this review, we summarize the recent progress of cold stress tolerance in plants from molecular and physiological perspectives and other factors, such as hormones, light, and circadian clock. Understanding the process of cold stress tolerance and the genes involved in the signaling network for cold stress is essential for improving plants, especially crops.https://www.mdpi.com/2223-7747/9/5/560chillingcold acclimationfreezinglow temperatureICE-CBF-CORtolerance |
spellingShingle | Faujiah Nurhasanah Ritonga Su Chen Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants Plants chilling cold acclimation freezing low temperature ICE-CBF-COR tolerance |
title | Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants |
title_full | Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants |
title_fullStr | Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants |
title_full_unstemmed | Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants |
title_short | Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants |
title_sort | physiological and molecular mechanism involved in cold stress tolerance in plants |
topic | chilling cold acclimation freezing low temperature ICE-CBF-COR tolerance |
url | https://www.mdpi.com/2223-7747/9/5/560 |
work_keys_str_mv | AT faujiahnurhasanahritonga physiologicalandmolecularmechanisminvolvedincoldstresstoleranceinplants AT suchen physiologicalandmolecularmechanisminvolvedincoldstresstoleranceinplants |