PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation.
Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it wa...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2008-07-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2440817?pdf=render |
_version_ | 1830449561925058560 |
---|---|
author | Pawan Gupta Ping-Chih Ho M D Mostaqul Huq Amjad Ali Khan Nien-Pei Tsai Li-Na Wei |
author_facet | Pawan Gupta Ping-Chih Ho M D Mostaqul Huq Amjad Ali Khan Nien-Pei Tsai Li-Na Wei |
author_sort | Pawan Gupta |
collection | DOAJ |
description | Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it was unclear what triggered RIP140 arginine methylation.In this study, we determined the activated PKCepsilon as the specific trigger for RIP140 arginine methylation and its subsequent export. We identified two PKCepsilon-phosphorylated residues of RIP140, Ser-102 and Ser-1003, which synergistically stimulated direct binding of RIP140 by 14-3-3 that recruited protein arginine methyl transferase 1 to methylate RIP140. The methylated RIP140 then preferentially recruited exportin 1 for nuclear export. As a result, the nuclear gene-repressive activity of RIP140 was reduced. In RIP140 null adipocyte cultures, the defect in fat accumulation was effectively rescued by the phosphorylation-deficient mutant RIP140 that resided predominantly in the nucleus, but less so by the phospho-mimetic RIP140 that was exported to the cytoplasm.This study uncovers a novel means, via a cascade of protein modifications, to inactivate, or suppress, the nuclear action of an important transcription coregulator RIP140, and delineates the first specific phosphorylation-arginine methylation cascade that could alter protein subcellular distribution and biological activity. |
first_indexed | 2024-12-21T07:59:14Z |
format | Article |
id | doaj.art-5bc074aeaded44d784a993f15373797b |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-21T07:59:14Z |
publishDate | 2008-07-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-5bc074aeaded44d784a993f15373797b2022-12-21T19:10:56ZengPublic Library of Science (PLoS)PLoS ONE1932-62032008-07-0137e265810.1371/journal.pone.0002658PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation.Pawan GuptaPing-Chih HoM D Mostaqul HuqAmjad Ali KhanNien-Pei TsaiLi-Na WeiReceptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it was unclear what triggered RIP140 arginine methylation.In this study, we determined the activated PKCepsilon as the specific trigger for RIP140 arginine methylation and its subsequent export. We identified two PKCepsilon-phosphorylated residues of RIP140, Ser-102 and Ser-1003, which synergistically stimulated direct binding of RIP140 by 14-3-3 that recruited protein arginine methyl transferase 1 to methylate RIP140. The methylated RIP140 then preferentially recruited exportin 1 for nuclear export. As a result, the nuclear gene-repressive activity of RIP140 was reduced. In RIP140 null adipocyte cultures, the defect in fat accumulation was effectively rescued by the phosphorylation-deficient mutant RIP140 that resided predominantly in the nucleus, but less so by the phospho-mimetic RIP140 that was exported to the cytoplasm.This study uncovers a novel means, via a cascade of protein modifications, to inactivate, or suppress, the nuclear action of an important transcription coregulator RIP140, and delineates the first specific phosphorylation-arginine methylation cascade that could alter protein subcellular distribution and biological activity.http://europepmc.org/articles/PMC2440817?pdf=render |
spellingShingle | Pawan Gupta Ping-Chih Ho M D Mostaqul Huq Amjad Ali Khan Nien-Pei Tsai Li-Na Wei PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. PLoS ONE |
title | PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. |
title_full | PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. |
title_fullStr | PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. |
title_full_unstemmed | PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. |
title_short | PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. |
title_sort | pkcepsilon stimulated arginine methylation of rip140 for its nuclear cytoplasmic export in adipocyte differentiation |
url | http://europepmc.org/articles/PMC2440817?pdf=render |
work_keys_str_mv | AT pawangupta pkcepsilonstimulatedargininemethylationofrip140foritsnuclearcytoplasmicexportinadipocytedifferentiation AT pingchihho pkcepsilonstimulatedargininemethylationofrip140foritsnuclearcytoplasmicexportinadipocytedifferentiation AT mdmostaqulhuq pkcepsilonstimulatedargininemethylationofrip140foritsnuclearcytoplasmicexportinadipocytedifferentiation AT amjadalikhan pkcepsilonstimulatedargininemethylationofrip140foritsnuclearcytoplasmicexportinadipocytedifferentiation AT nienpeitsai pkcepsilonstimulatedargininemethylationofrip140foritsnuclearcytoplasmicexportinadipocytedifferentiation AT linawei pkcepsilonstimulatedargininemethylationofrip140foritsnuclearcytoplasmicexportinadipocytedifferentiation |