Summary: | Coalgebras for a functor model different types of transition systems in a
uniform way. This paper focuses on a uniform account of finitary logics for
set-based coalgebras. In particular, a general construction of a logic from an
arbitrary set-functor is given and proven to be strongly complete under
additional assumptions. We proceed in three parts. Part I argues that sifted
colimit preserving functors are those functors that preserve universal
algebraic structure. Our main theorem here states that a functor preserves
sifted colimits if and only if it has a finitary presentation by operations and
equations. Moreover, the presentation of the category of algebras for the
functor is obtained compositionally from the presentations of the underlying
category and of the functor. Part II investigates algebras for a functor over
ind-completions and extends the theorem of J{\'o}nsson and Tarski on canonical
extensions of Boolean algebras with operators to this setting. Part III shows,
based on Part I, how to associate a finitary logic to any finite-sets
preserving functor T. Based on Part II we prove the logic to be strongly
complete under a reasonable condition on T.
|