A Combinatorial Model for $q$-Generalized Stirling and Bell Numbers

We describe a combinatorial model for the $q$-analogs of the generalized Stirling numbers in terms of bugs and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating functions for these $q$-analogs. We give a weight preserving bijective corre...

Full description

Bibliographic Details
Main Authors: Miguel Méndez, Adolfo Rodríguez
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2008-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3607/pdf
Description
Summary:We describe a combinatorial model for the $q$-analogs of the generalized Stirling numbers in terms of bugs and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating functions for these $q$-analogs. We give a weight preserving bijective correspondence between our combinatorial model and rook placements on Ferrer boards. We outline a direct application of our theory to the theory of dual graded graphs developed by Fomin. Lastly we define a natural $p,q$-analog of these generalized Stirling numbers.
ISSN:1365-8050